Skip to main content

Determination of Kinetic Parameters in Laminar Flow Reactors. II. Experimental Aspects

  • Conference paper
  • 1602 Accesses

Summary

In the present contribution laser spectroscopic studies are described in which the chemical kinetics of benchmark elementary reaction steps in different laminar flow reactors were experimentally investigated along with detailed numerical modeling calculations (see the article Carraro/Heuveline/Rannacher [5] in this vol-ume). Coherent anti-Stokes Raman spectroscopy (CARS) was utilized to study the collisional relaxation and vibrational energy transfer of vibrationally excited molec-ular hydrogen H2(v = 1) in a low-temperature discharge flow reactor (T = 110 — 300 K). In theses studies wall deactivation probabilities and thermal rate constants for the vibrational energy transfer gas-phase reaction H2(v = 1) + D2(v = 0) → D2(v = 1) + H2(v = 0) could be derived from a direct comparison of measured con-centration profiles with results from a detailed numerical modeling. Further experi-ments were performed, in which CARS for molecular hydrogen detection along with OH laser-induced fluorescence (LIF) spectroscopy was utilized to determine the rate constant for the gas-phase reaction OH + H2(v = 1) → H + H2O. Finally a high-temperature flow reactor setup will be described, which allows for kinetics studies of elementary reactions using the pulsed laser photolysis (LP)/laser induced fluores-cence (LIF) pump-and-probe technique. The latter technique was employed in the present work to investigate the temperature dependence of the reaction of electron-ically excited oxygen atoms with molecular hydrogen, O(1D) + H2 → H + OH.

The contents of the present article is organized as follows:

  • Introduction

  • Experimental Section

  • Results and Discussion

  • Summary

This work has been supported by the German Research Foundation (DFG) through SFB 359 (Project Bl) at the University of Heidelberg.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wood, R.W.: Spontaneous incandescence of substances in atomic hydrogen gas, Proc. R. Soc. (London), A102, 1–9, (1922)

    Google Scholar 

  2. Bonhoeffer, K.F.: The behavior of active hydrogen. Z. Phys. Chem., 113, 199–219, (1924)

    Google Scholar 

  3. Schlichting, H. In: Braun, G. (ed) Boundary layer theory. Karlsruhe, 1982.

    Google Scholar 

  4. Kaufmann, F.: Progress reaction kinetics. Pergamon Press, New York, 1961; Vol. 1.

    Google Scholar 

  5. Carraro, T., Heuveline, V., Rannacher, R.: Determination of kinetic parame-ters in laminar flow reactors. I. numerical aspects, reactive flows, diffusion and transport, (R. Rannacher et al., eds), Springer, Berlin-Heidelberg (2005)

    Google Scholar 

  6. Billing, G.D., Kolesnick, R.E.: Semi-classical calculations of rate constants for vibrational transitions in hydrogen, Chem. Phys. Lett., 215, 571–575 (1993)

    Article  Google Scholar 

  7. Warnatz, J., Maas, U., and Dibble, R.W.: Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 3d ed. Springer, Berlin (2005)

    Google Scholar 

  8. Wayne, R.P.: Chemistry of atmospheres, 2nd ed. Oxford University Press, Oxford, (1991)

    Google Scholar 

  9. Millar, T.J. and Williams D.A. (eds.): Rate coefficients in astrochemistry. Kluwer, Dordrecht (1988)

    Google Scholar 

  10. Althorpe, S.C., Clary, D.C.: Quantum scattering calculations on chemical reactions, Annu. Rev. Phys. Chem. 54, 493–529 (2003)

    Article  Google Scholar 

  11. Volpp, H.-R.: The dynamics of the H + X 2 O(X = H, D) gas-phase isotope reactions: comparison between experiment and quantum theory. Proceedings of the Indian National Science Academy (PINSA), Part A, Vol. 66/1 “Special Issue on Chemical Dynamics and Photochemistry I” pp. 1–28 (2000)

    Google Scholar 

  12. Koppe, S., Laurent, T., Naik, P.D., Volpp, H.-R., Wolfrum, J., Arusi-Parpar, T., Bar, I., Rosenwaks, S.: Absolute rate constants and reactive cross sections for the reactions of O( 1 D) with molecular hydrogen and deuterium, Chem. Phys. Lett., 214, 546–552 (1993)

    Article  Google Scholar 

  13. Berg, P.A., Sloan, J.J., Kuntz, P.J., The effect of reagent excitation on the dynamics of the reaction O(1 D 2) + H 2OH(X 2 II) + H, J. Chem. Phys., 95, 8038–8047 (1991)

    Article  Google Scholar 

  14. K. Drukker, G. C. Schatz: Quantum scattering study of electronic Coriolis and nonadiabatic coupling effects in O(1 D) + H 2OH + H J. Chem. Phys. 111, 2451–2463 (1999)

    Article  Google Scholar 

  15. Davidson, J.A., Schiff, H.I., Streit, G.E., McAfee, J.R. Schmeltekopf, A.L., Howard, C.J.: Temperature dependence of O(1D) rate constants for reactions with N2O,H2,CH4,HCl, and NH3, J. Chem. Phys., 67, 5021–5025 (1977)

    Article  Google Scholar 

  16. Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F., Kerr, J.A., Rossi, M.J., Troe J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmo-spheric chemistry, J. Phys. Chem. Ref. Data, 26, 1329–1499 (1997)

    Article  Google Scholar 

  17. Aoiz, F.J., Bañares, L., Castillo, J.F., Brouard, M., Denzer, W., Insertion and abstraction pathways in the reaction O(1 D 2)+H 2OH + H, Phys. Rev. Lett., 86, 1729–1732 (2001)

    Article  Google Scholar 

  18. Honvault, P., Launay, J.-M., A quantum-mechanical study of the dynamics of the O(1 D) + H 2OH + H insertion reaction J. Chem. Phys., 114, 1057–1059 (2001)

    Article  Google Scholar 

  19. Buchenau, H., Toennies, J.P., Arnold, J., Wolfrum, J., H + H 2: The current status, Ber. Bunsenges. Phys. Chem., 94, 1231–1248 (1990)

    Google Scholar 

  20. Arnold, J., Bouché, T., Dreier, T., Wichmann, J., Wolfrum, CARS studies on the heterogeneous relaxation of vibrationally excited hydrogen and deuterium, J. Chem. Phys. Lett., 203, 283–288 (1993)

    Article  Google Scholar 

  21. Seitzman, J.M., Hanson, R.K., in: Taylor, A.M.K.P. (ed.) Instrumentation for flows with combustion. Academic Press, London (1993)

    Google Scholar 

  22. Tsang, W., Herron, J.T.: Chemical kinetic data base for propellant combustion. I. Reactions involving NO, NO 2, HNO, HNO 2, HCN and N 2 O, J. Phys. Chem. Ref. Data., 20, 609–663 (1991)

    Article  Google Scholar 

  23. Rahn, L.A., Zych, L.J., Mattern, P.L., Background-free CARS studies of carbon monoxide in a flame, Opt. Commun., 39, 249–253 (1979)

    Article  Google Scholar 

  24. Clyne, M.A.A., Thrush, B.A., Rates of elementary processes in the chain reaction between hydrogen and oxygen. I. Reactions of oxygen atoms, Proc. R. Soc, A275, 544–558 (1963)

    Google Scholar 

  25. Hartley, D.B., Thrush, B.A., The rates of elementary processes in the chain reaction between hydrogen and oxygen. III. kinetics of the combination of hydrogen atoms with nitric oxide, Proc. R. Soc, A297, 520–533 (1967)

    Google Scholar 

  26. Péalat, M., Lefebvre, M., Taran, J-P.E., Kelley, P.L., Sensitivity of quantitative vibrational coherent anti-Stokes Raman spectroscopy to saturation and Stark shifts, Phys. Rev. A, 38, 1948–1965 (1988)

    Article  Google Scholar 

  27. Dieke, G.H., Crosswhite, M.H., The ultraviolet bands of OH Fundamental data, J. Quantum Spectrosc. Radiative Transfer, 2, 97–199 (1962)

    Article  Google Scholar 

  28. Smyth, K.C., Crosley, D.R., in: Jeffries, J., Kohse-Höinghaus, K. (eds.) Applied combustion diagnostics. Taylor & Francis (2002)

    Google Scholar 

  29. Chidsey, I.L., Crosley, D.R., Calculated rotational transition probabilities for the A-X system of OH, J. Quantum Spectrosc. Radiative Transfer, 23, 187–199 (1980)

    Article  Google Scholar 

  30. Hanf, A., Konstruktion eines Hochtemperaturströomungsreaktors und Unter-suchung der Reaktion O(1 D) + H 2H + OH bei hohen Temperaturen, PhD thesis, University of Heidelberg, (2005)

    Google Scholar 

  31. Carraro, T., Parameter estimation and experimental design in flow reactors, PhD thesis, University of Heidelberg, (2005)

    Google Scholar 

  32. Carraro, T., Heuveline, V., Parameter estimation and experimental design in flow reactors, Preprint, SFB 359, University of Heidelberg, (March 2005)

    Google Scholar 

  33. KANTHAL SUPER, Electric heating Element Handbook, Hallstahammar, Sweden (1994)

    Google Scholar 

  34. Felder, P., Haas, B.-M., Huber J. R., The photoreaction N 2 OO(1 D)+N 2(1 Σ) at 193 nm studied by photofragment translational spectroscopy, Chem. Phys. Letters 186, 177–182 (1991)

    Article  Google Scholar 

  35. Brownsword, R.A., Hillenkamp, M., Laurent, T., Volpp, H.-R., Wolfrum, J., Vatsa, R.K., Yoo, H.-S., Excitation function and reaction threshold studies of isotope exchange reactions: H + D 2D + HD and H + D 2 OD + HOD, J. Phys. Chem. 101, 6448–6454 (1997) “Y.T. Lee Special Issue”.

    Google Scholar 

  36. Hilber, G., Lago, A., Wallenstein, R.,Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton., J. Opt. Soc. Am. B., 4, 1753–1764 (1987)

    Article  Google Scholar 

  37. Brownsword, R.A., Hillenkamp, M., Laurent, T., Vatsa, R.K., Volpp, H.-R., Photodissociation dynamics in the UV laser photolysis of DNCO: comparison with HNCO, J. Chem. Phys. 106, 4436–4447 (1997)

    Article  Google Scholar 

  38. Boquillon, J. P., Pealat, M., Bouchardy, P., Collin, G., Magre, P., Spatial averaging and multiplex coherent anti-Stokes Raman scattering temperature-measurement error, Opt. Lett., 13, 722–725 (1988)

    Google Scholar 

  39. Bloembergen, N., Nonlinear optics; W. A. Benjamin, Inc.: New York, (1965)

    Google Scholar 

  40. Druet, S. A. J., Taran, J. P. E., Gars spectroscopy, Prog. Quant. Electron., 7, 1–72 (1981)

    Article  Google Scholar 

  41. Gershenzon, Yu. M., Ivanov, A. V., Kucheryavi, S. I., Lyapunov, A. Ya., Rozen-shtein, V. B., Reactions of vibrationlly excited hydrogen and deuterium molecules with atoms and radicals: Heterogeneous relaxation of the vibrational energy of H 2 and D 2 on quartz and Teflon surfaces, Kinet. Catal., 27, 928–932, (1986)

    Google Scholar 

  42. Segatz, J., Rannacher, R., Wichmann, J., Orlemann, C, Dreier, T., Wolfrum J., Detailed numerical simulations in flow reactors: A new approach in measuring absolute rate constants, J. Phys. Chem. 100, 9323–9333 (1996)

    Article  Google Scholar 

  43. Pirkle, R. J., Cool, T. A., Vibrational energy transfer for H 2D 2 and H 2HCl mixtures from 220-450 K, Chem. Phys. Lett., 42, 58–63, (1976)

    Article  Google Scholar 

  44. Bott, J. F., Vibrational energy exchange between H 2(v = 1) and D 2, N 2, HGl, and CO 2, J. Chem. Phys., 65, 3921–3928, (1976)

    Article  Google Scholar 

  45. Schneider-Kühnle, Y., Dreier, T., Wolfrum, J., Vibrational relaxation and energy transfer in the hydrogen system at temperatures between 110 and 300 K, Chem. Phys. Letters 294, 191–196, (1998)

    Article  Google Scholar 

  46. Spencer, J. E., Endo, H., Glass, G. P., 16th Symp. (Intern.) on Combustion, The Combustion Institute, Pittsburgh, p. 829. (1976)

    Google Scholar 

  47. Schatz, G. C, Elgersma, H., A quasi-classical trajectory study of product vibra-tional distributions in the OH + H 2H 2 O + H reaction, Chem. Phys. Lett. 73, 21–25 (1980)

    Article  Google Scholar 

  48. Walch, S. P., Dunning, T. H., A theoretical study of the potential energy surface for OH + H 2, J. Chem. Phys. 72, 1303–1311 (1980)

    Article  Google Scholar 

  49. Koppe, S., Laurent, T., Naik, P.D., Volpp, H.-R., Wolfrum, J., Reaction dynam-ics studies of a simple tetraatomic system: AA + BA → A + ABA, Can. J. Chem. 72, 615–624 (1994): “Paper dedicated to Prof. John C. Polanyi on the occasion of his 65th birthday”.

    Article  Google Scholar 

  50. Light, G. C, Matsumoto, J. H., The effect of vibrational excitation in the reactions of OH with H 2, Chem. Phys. Lett. 58, 578–581 (1978)

    Article  Google Scholar 

  51. Zellner, R., Steinert, W., Vibrational rate enhancement in the reaction OH + H 2(v = 1) → H 2 O + H, Chem. Phys. Lett., 81, 568–572 (1981)

    Article  Google Scholar 

  52. Glass, G. P., Chaturvedi, B. K., The effect of vibrational excitation of H 2 and OH on the rate of the reaction H 2 + OHH 2 O + H, J. Chem. Phys. 75, 2749–2752 (1981)

    Article  Google Scholar 

  53. Sukiasyan, S., Investigation of three-and fouratomic reactive scattering problems with the help of the multiconfiguration time-dependent Hartree method, PhD thesis, University of Heidelberg, (2005)

    Google Scholar 

  54. Beck, M. H., Jäckie, A., Worth, G. A., Meyer, H.-D., The multiconfiguration time-dependent Hartree method: A highly efficient algorithm for propagating wavepackets, Phys. Rep. 324, 1–105 (2000)

    Article  Google Scholar 

  55. Meyer, H.-D., The Heidelberg MCTDH Package, http://www.pci.uni-heidelberg.de/tc/usr/mctdh/index.html#package/.

    Google Scholar 

  56. Yang, M., Zhang, D. H., Collins, M. A., Lee, S.-Y., Ab initio potential energy surface for the reactions H 2 + OHH 2 O + H, J. Chem. Phys. 115, 174 (2001)

    Article  Google Scholar 

  57. Heuveline, V., HiFlow: A finite element solver package, http://www.hiflow.de/

    Google Scholar 

  58. Warnatz. J., HOMREACT: code for the simulation of HOMogeneous REACTion Systems, http://reaflow.iwr.uni-heidelberg.de/homreact.php/

    Google Scholar 

  59. Schatz, G. C, Papioannou, A., Pederson, L. A., Harding, L. S., Hollebeek, T., Ho, T.-S., Rabitz, H., A global Astate potential surface for H 2 O: Influence of excited state on the O(1 D) + H 2 reaction, J. Chem. Phys., 107, 2340–2350 (1997)

    Article  Google Scholar 

  60. Brandão, J., Rio, C. M. A., Quasiclassical and capture studies on the O(1 D) + H 2 reaction using a new potential energy surface for H 2 O, Chem. Phys. Lett., 377, 523–529 (2003)

    Article  Google Scholar 

  61. Lin, S. Y., Guo, H.,: Quantum integral cross-section and rate constant of the O(1 D) + H 2OH + H reaction on a new potential energy surface, Chem. Phys. Lett., 385, 193–197 (2004)

    Article  Google Scholar 

  62. Brandão, J., Rio, C. M. A.,: Long-range interactions within the H 2 O molecule, Chem. Phys. Lett., 372, 866–872 (2003)

    Article  Google Scholar 

  63. Brandão, J., Rio, C. M. A.,: Quasiclassical and capture studies on the O(1 D) + H 2OH + H reaction using a new potential energy surface for H 2 O, Chem. Phys. Lett. 377, 523–529 (2003)

    Article  Google Scholar 

  64. Ho, T.-S., Hollebeek, T., Rabitz, H., Harding, L. B., G. C. Schatz,: A global H 2 O potential energy surface for the reaction O(1 D) + H 2OH + H, J. Chem. Phys., 105, 10472–10486 (1996)

    Article  Google Scholar 

  65. Talukdar, R. K., Ravishankara, A. R.,: Rate coefficients for O(1 D) + H 2, D 2, HD reactions and H atom yield in O(1 D) + HD, Chem. Phys. Lett., 253, 177–183 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hanf, A., Volpp, H.R., Wolfrum, J. (2007). Determination of Kinetic Parameters in Laminar Flow Reactors. II. Experimental Aspects. In: Jäger, W., Rannacher, R., Warnatz, J. (eds) Reactive Flows, Diffusion and Transport. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28396-6_10

Download citation

Publish with us

Policies and ethics