Multiple Agents RendezVous in a Ring in Spite of a Black Hole

  • Stefan Dobrev
  • Paola Flocchini
  • Giuseppe Prencipe
  • Nicola Santoro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3144)


The Rendezvous of anonymous mobile agents in a anonymous network is an intensively studied problem; it calls for k anonymous, mobile agents to gather in the same site. We study this problem when in the network there is a black hole: a stationary process located at a node that destroys any incoming agent without leaving any trace. The presence of the black hole makes it clearly impossible for all agents to rendezvous. So, the research concern is to determine how many agents can gather and under what conditions.

In this paper we consider k anonymous, asynchronous mobile agents in an anonymous ring of size n with a black hole; the agents are aware of the existence, but not of the location of such a danger. We study the rendezvous problem in this setting and establish a complete characterization of the conditions under which the problem can be solved. In particular, we determine the maximum number of agents that can be guaranteed to gather in the same location depending on whether k or n is unknown (at least one must be known for any non-trivial rendezvous). These results are tight: in each case, rendezvous with one more agent is impossible.

All our possibility proofs are constructive: we provide mobile agents protocols that allow the agents to rendezvous or near-gather under the specified conditions. The analysis of the time costs of these protocols show that they are optimal.

Our rendezvous protocol for the case when k is unknown is also a solution for the black hole location problem. Interestingly, its bounded time complexity is Θ(n); this is a significant improvement over the O(n log n) bounded time complexity of the existing protocols for the same case.


Mobile Agents RendezVous Gathering Black Hole Harmful Host Ring Network Asynchronous Anonymous Distributed Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkin, E., Bender, M., Fekete, S., Mitchell, J.: The freeze-tag problem: how to wake up a swarm of robots. In: 13th ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 568–577 (2002)Google Scholar
  2. 2.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA 2002), pp. 200–209 (2002)Google Scholar
  3. 3.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Election and rendezvous in fully anonymous systems with sense of direction. In: 10th Colloquium on Structural Information and Communication complexity (SIROCCO 2003), pp. 17–32 (2003)Google Scholar
  4. 4.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algorithms 33, 281–295 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alpern, S.: The rendezvous search problem. SIAM Journal of Control and Optimization 33, 673–683 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alpern, S., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Anderson, E., Weber, R.R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: 23rd International Conference on Distributed Computing Systems, ICDCS 2003 (2003)Google Scholar
  10. 10.
    Yu, X., Yung, M.: Agent rendezvous:Adynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004) (accepted for publication)CrossRefGoogle Scholar
  12. 12.
    Lim, W., Beck, A., Alpern, S.: Rendezvous search on the line with more than two players. Operations Research 45, 357–364 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    amd P.B. Hulme, L.T.: Searching for targets who want to be found. Journal of the Operations Research Society 48, 44–50 (1997)Google Scholar
  14. 14.
    Hohl, F.: A framework to protect mobile agents by using reference states. In: International Conference on Distributed Computing Systems, ICDCS 2000 (2000)Google Scholar
  15. 15.
    Sander, T., Tschudin, C.F.: Protecting mobile agents against malicious hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 44–60. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Vitek, J., Castagna, G.: In: Mobile Computations and Hostile Hosts, University of Geneva, pp. 241–261 (1999)Google Scholar
  17. 17.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile agents searching for a black hole in an anonymous ring. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 166–179. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Finding a black hole in an arbitrary network: optimal mobile agents protocols. In: Proc. of 21st ACM Symposium on Principles of Distributed Computing (PODC 2002), pp. 153–162 (2002)Google Scholar
  19. 19.
    Dobrev, S., Flocchini, P., c, R.K., Prencipe, G., cka, P.R., Santoro, N.: Searching for a black hole in hypercubes and related networks. In: 6th International Conference on Principles of Distributed Systems (OPODIS 2002), pp. 171–182 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stefan Dobrev
    • 1
  • Paola Flocchini
    • 1
  • Giuseppe Prencipe
    • 2
  • Nicola Santoro
    • 3
  1. 1.University of Ottawa 
  2. 2.Università di Pisa 
  3. 3.Carleton University 

Personalised recommendations