Advertisement

Emulating Shared-Memory Do-All Algorithms in Asynchronous Message-Passing Systems

  • Dariusz R. Kowalski
  • Mariam Momenzadeh
  • Alexander A. Shvartsman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3144)

Abstract

A fundamental problem in distributed computing is performing a set of tasks despite failures and delays. Stated abstractly, the problem is to perform N tasks using P failure-prone processors. This paper studies the efficiency of emulating shared-memory task-performing algorithms on asynchronous message-passing processors with quantifiable message latency. Efficiency is measured in terms of work and communication, and the challenge is to obtain subquadratic work and message complexity. While prior solutions assumed synchrony and constant delays, the solutions given here yields subquadratic efficiency with asynchronous processors when the delays and failures is suitably constrained. The solutions replicate shared objects using a quorum system, provided it is not disabled. One algorithm has subquadratic work and communication when the delays and the number of processors, K, owning object replicas, are O(P 0.41). It tolerates \(\lceil \frac{K-1}{2}\rceil\) crashes. It is also shown that there exists an algorithm that has subquadratic work and communication and that tolerates o(P) failures, provided message delays are sublinear.

Keywords

Distributed algorithm fault-tolerance work communication quorums 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.J., Woll, H.: Algorithms for the Certified Write-All Problem. SIAM Journal of Computing 26(5), 1277–1283 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Attiya, H., Bar-Noy, A., Dolev, D.: Sharing Memory Robustly in Message Passing Systems. Journal of the ACM 42(1), 124–142 (1996)CrossRefGoogle Scholar
  3. 3.
    Buss, J., Kanellakis, P., Ragde, P., Shvartsman, A.: Parallel Algorithms with Processor Failures and Delays. Jour. of Algorithms 20(1), 45–86 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chlebus, B.S., Ga̧sieniec, L., Kowalski, D., Shvartsman, A.A.: Boundingwork and communication in robust cooperative computation. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 295–310. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    De Prisco, R., Mayer, A., Yung, M.: Time-Optimal Message-EfficientWork Performance in the Presents of Faults. In: Proceedings of the 13th Symposium on Distributed Computing, pp. 161–172 (1994)Google Scholar
  6. 6.
    Dwork, C., Halpern, J., Waarts, O.: Performing Work Efficiency in Presence of Faults. SIAM Journal on Computing 27(5), 1457–1491 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. Journal of the ACM 35(2), 288–323 (1988)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Galil, Z., Mayer, A., Yung, M.: Resolving Message Complexity of Byzantine Agreement and Beyond. In: Proceedings of the 36th IEEE Symposium on Foundation of Computer Science, pp. 724–733 (1995)Google Scholar
  9. 9.
    Georgiou, C., Kowalski, D., Shvartsman, A.A.: Efficient Gossip and Robust Distributed Computation. In: Proc. of the 17th International Symposium on Distributed Computing, pp. 224–238 (2003)Google Scholar
  10. 10.
    Gifford, D.K.: Weighted Voting for Replicated Data. In: Proceedings of the 7th Symposium on Operating Systems Principles, pp. 150–159 (1979)Google Scholar
  11. 11.
    Kanellakis, P.C., Shvartsman, A.A.: Fault-Tolerant Parallel Computation. Kluwer Academic Publishers, Dordrecht (1997) ISBN 0-7923-9922-6zbMATHGoogle Scholar
  12. 12.
    Kedem, Z.M., Palem, K.V., Raghunathan, A., Spirakis, P.: Combing Tentative and Definite Executions for Dependable Parallel Computing. In: Proceedings of the 23rd Symposium on Theory of Computing, pp. 381–390 (1991)Google Scholar
  13. 13.
    Kowalski, D., Shvartsman, A.A.: Performing Work with Asynchronous Processors: Message-Delay-Sensitive Bounds. In: Proceedings 22nd ACM Symposium on Distributed Computing, pp. 211–222 (2003)Google Scholar
  14. 14.
    Lynch, N., Shvartsman, A.A.: RAMBO: A Reconfigurable Atomic Memory Service for Dynamic Networks. In: Proceedings of the 16th International Symposium on Distributed Computing (DISC), pp. 173–190 (2002)Google Scholar
  15. 15.
    Momenzadeh, M.: Emulating Shared-Memory Do-All in Asynchronous Message Passing Systems, Masters thesis, University of Connecticut (2003)Google Scholar
  16. 16.
    Thomas, R.: A Majority Consensus Approach to Concurrency Control for Multiple Copy Databases. ACM Trans. on Database Sys. 4(2), 180–209 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dariusz R. Kowalski
    • 2
    • 3
  • Mariam Momenzadeh
    • 4
  • Alexander A. Shvartsman
    • 1
    • 5
  1. 1.Department of Computer Science and EngineeringUniversity of ConnecticutStorrsUSA.
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.Instytut Informatyki, Uniwersytet WarszawskiWarszawaPoland
  4. 4.Department of Electrical and Computer EngineeringNortheastern UniversityBostonUSA.
  5. 5.Computer Science and Artificial Intelligence LaboratoryMITCambridgeUSA.

Personalised recommendations