Skip to main content

Learning Bayesian Networks by Lamarckian Genetic Algorithm and Its Application to Yeast Cell-Cycle Gene Network Reconstruction from Time-Series Microarray Data

  • Conference paper
Biologically Inspired Approaches to Advanced Information Technology (BioADIT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3141))

Abstract

A gene network depicts the inter-regulatory relations among genes. Knowledge of the gene network is key to an understanding of biological processes. A Bayesian network, consisting of nodes and directed arcs, is a convenient vehicle to model gene networks. We described a nonlinear model for the rate of gene transcription. Levels of gene expression are continuous in the model. We employed a genetic algorithm to evolve the structure of a Bayesian network. Given a candidate structure, the best parameters are estimated by the downhill simplex algorithm. The methodology features a reconstruction resolution that is limited by data noise. We tested the implementation by artificial gene networks in simulations. We then applied the methodology to reconstruct the regulation network of 27 yeast cell cycle genes from a real microarray dataset. The result obtained is promising: 17 out of the 22 reconstructed regulations are consistent with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

    Article  Google Scholar 

  2. Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., Brown, E.L.: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996)

    Article  Google Scholar 

  3. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  4. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. In: Pacific Symposium on Biocomputing, vol. 4, pp. 29–40 (1999)

    Google Scholar 

  5. D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: from coexpression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000)

    Article  Google Scholar 

  6. Wessels, L.F.A., van Someren, E.P., Reinders, M.J.T.: A comparison of genetic network models. In: Pacific Symposium on Biocomputing, vol. 6, pp. 508–519 (2001)

    Google Scholar 

  7. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002)

    Article  Google Scholar 

  8. McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819 (1997)

    Article  Google Scholar 

  9. Heckerman, D.: A Tutorial on Learning with Bayesian Networks. Technical Report MSR-TR-95-06, Microsoft Research (1995)

    Google Scholar 

  10. Ghahramani, Z.: Learning Dynamic Bayesian Networks. In: Giles, C.L., Gori, M. (eds.) IIASS-EMFCSC-School 1997. LNCS (LNAI), vol. 1387, pp. 168–197. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Murphy, K., Mian, S.: Modelling Gene Expression Data using Dynamic Bayesian Networks. Technical Report, Computer Science Division, University of California Berkeley, CA (1999)

    Google Scholar 

  12. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian Networks to Analyze Expression Data. J. Comput. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  13. Ong, I.M., Glasner, J.D., Page, D.: Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18, 241S–248S (2002)

    Google Scholar 

  14. Savageau, M.A.: Biochemical systems analysis I & II. J. Theor. Biol. 25, 365–379 (1969)

    Article  Google Scholar 

  15. Savageau, M.A.: Rules for the Evolution of Gene Circuitry. In: Pacific Symposium on Biocomputing, vol. 3, pp. 54–65 (1998)

    Google Scholar 

  16. Kim, S.Y., Imoto, S., Miyano, S.: Dynamic Bayesian Network and Nonparametric Regression Model for Inferring Gene Networks. Genome Informatics 13, 371–372 (2002)

    Google Scholar 

  17. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal Statist. Soc. 39 B, 1–38 (1977)

    MathSciNet  Google Scholar 

  18. Holland, J.H.: Outline for a logical theory of adaptive systems. JACM 3, 297–314 (1962)

    Article  Google Scholar 

  19. Wang, S.C.: Interdisciplinary Computing in Java Programming Language. Kluwer Academic Publishers, Boston (2003)

    MATH  Google Scholar 

  20. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycleregulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)

    Google Scholar 

  21. Akutsu, T., Miyano, S., Kuhara, S.: Algorithms for inferring qualitative models of biological networks. In: Pacific Symposium on Biocomputing, vol. 5, pp. 290–301 (2000)

    Google Scholar 

  22. Voit, E.O., Radivoyevitch, T.: Biochemical systems analysis of genome-wide expression data. Bioinformatics 16, 1023–1037 (2000)

    Article  Google Scholar 

  23. Savageau, M.A., Voit, E.O.: Recasting Nonlinear Differential Equations as SSystems: A Canonical Nonlinear Form. Mathematical Biosciences 87, 83–115 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schwartz, G.: Estimating the dimension of a model. Ann. Statist. 6, 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  25. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automat. Contr. AC-19, 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  26. Sugiura, N.: Further Analysis of the Data by Akaike’s Information Criterion and the Finite Corrections. Commun. Statist. -Theor. Meth. A7, 13–26 (1978)

    Article  MathSciNet  Google Scholar 

  27. De Hoon, M., Imoto, S., Miyano, S.: Inferring gene regulatory networks from timeordered gene expression data using differential equations. Discovery Science, 267–274 (2002)

    Google Scholar 

  28. Ando, S., Iba, H.: Inference of Gene Regulatory Model by Genetic Algorithms. In: Proc. Conference on Evolutionary Computation, pp. 712–719 (2001)

    Google Scholar 

  29. Wahde, M., Hertz, J.: Modeling Genetic Regulatory Dynamics in Neural Development. J. Comput. Biol. 8, 429–442 (2001)

    Article  Google Scholar 

  30. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)

    MATH  Google Scholar 

  31. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function. J. Computational Chemistry 19, 1639–1662 (1998)

    Article  Google Scholar 

  32. Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring Subnetworks from Perturbed Expression Profiles. Bioinformatics 17, 215S–224S (2001)

    Google Scholar 

  33. MacKay, D.C.J.: Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems 6, 469–505 (1995)

    Article  MATH  Google Scholar 

  34. Nasmyth, K.: At the heart of the budding yeast cell cycle. Trends Genet. 12, 405–412 (1996)

    Article  Google Scholar 

  35. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.R., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A.: Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002)

    Article  Google Scholar 

  36. Simon, I., Barnett, J., Hannett, N., Harbison, C.T., Rinaldi, N.J., Volkert, T.L., Wyrick, J.J., Zeitlinger, J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001)

    Article  Google Scholar 

  37. Tyers, M., Tokiwa, G., Futcher, B.: Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12, 1955–1968 (1993)

    Google Scholar 

  38. Di Como, C.J., Chang, H., Arndt, K.T.: Activation of CLN1 and CLN2 G1 cyclin gene expression by BCK2Mol. Cell. Biol. 15, 1835–1846 (1995)

    Google Scholar 

  39. Sillje, H.H., ter Schure, E.G., Rommens, A.J., Huls, P.G., Woldringh, C.L., Verkleij, A.J., Boonstra, J., Verrips, C.T.: Effects of different carbon fluxes on G1 phase duration, cyclin expression, and reserve carbohydrate metabolism in Saccharomyces cerevisiae. J. Bacteriol. 179, 6560–6565 (1997)

    Google Scholar 

  40. Ho, Y., Costanzo, M., Moore, L., Kobayashi, R., Andrews, B.J.: Regulation of transcription at the Saccharomyces cerevisiae start transition by Stb1, a Swi6-binding protein. Mol. Cell. Biol. 19, 5267–5278 (1999)

    Google Scholar 

  41. Kumar, R., Reynolds, D.M., Shevchenko, A., Shevchenko, A., Goldstone, S.D., Dalton, S.: Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr. Biol. 10, 896–906 (2000)

    Article  Google Scholar 

  42. Pic, A., Lim, F.L., Ross, S.J., Veal, E.A., Johnson, A.L., Sultan, M.R., West, A.G., Johnston, L.H., Sharrocks, A.D., Morgan, B.A.: The forkhead protein Fkh2 is a component of the yeast cell cycle transcription factor SFF. EMBO J. 19, 3750–3761 (2000)

    Article  Google Scholar 

  43. Zhu, G., Spellman, P.T., Volpe, T., Brown, P.O., Botstein, D., Davis, T.N., Futcher, B.: Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406, 90–94 (2000)

    Article  Google Scholar 

  44. MacKay, V.L., Mai, B., Waters, L., Breeden, L.L.: Early cell cycle box-mediated transcription of CLN3 and SWI4 contributes to the proper timing of the G(1)-to-S transition in budding yeast. Mol. Cell. Biol. 21, 4140–4148 (2001)

    Article  Google Scholar 

  45. Costanzo, M., Schub, O., Andrews, B.: G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1. Mol. Cell. Biol. 23, 5064–5077 (2003)

    Article  Google Scholar 

  46. Lemon, B., Tjian, R.: Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 2000 14, 2551–2569 (2000)

    Article  Google Scholar 

  47. Merika, M., Thanos, D.: Enhanceosomes. Curr. Opin. Genet. Dev. 11, 205–208 (2001)

    Article  Google Scholar 

  48. Kerr, M.K., Churchill, G.A.: Analysis of variance for gene expression microarray data. J. Comput. Biol. 7, 819–837 (2001)

    Article  Google Scholar 

  49. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.-L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  50. Koch, C., Laurent, G.: Complexity in Nervous Systems. Science 284, 96–98 (1999)

    Article  Google Scholar 

  51. Watts, D.J., Strogatz, S.H.: Collective Dynamics of ‘Small World Networks’. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  52. Lawrence, S., Giles, C.L.: Searching the world wide web. Science 280, 98–100 (1998)

    Article  Google Scholar 

  53. Redner, S.: How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4, 131–134 (1998)

    Article  Google Scholar 

  54. Barabasi, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  55. Albert, R., Jeong, H., Barabasi, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  56. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.-L.: Hierarchical Organization of Modularity in Metabolic Networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  57. Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In: Pacific Symposium on Biocomputing, vol. 6, pp. 422–433 (2001)

    Google Scholar 

  58. Yoo, C., Thorsson, V., Cooper, G.F.: Discovery of Causal Relationships in a Gene- Regulation Pathway from a Mixture of Experimental and Observational DNA Microarray Data. In: Pacific Symposium on Biocomputing, vol. 7, pp. 498–509 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, SC., Li, SP. (2004). Learning Bayesian Networks by Lamarckian Genetic Algorithm and Its Application to Yeast Cell-Cycle Gene Network Reconstruction from Time-Series Microarray Data. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2004. Lecture Notes in Computer Science, vol 3141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27835-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27835-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23339-8

  • Online ISBN: 978-3-540-27835-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics