Skip to main content

Experimental Molecular Evolution Showing Flexibility of Fitness Leading to Coexistence and Diversification in Biological System

  • Conference paper
Biologically Inspired Approaches to Advanced Information Technology (BioADIT 2004)

Abstract

Molecular evolution was observed through three serial cycles of consecutive random mutagenesis of glutamine synthetase gene and chemostat culture of transformed Escherichia coli cells containing the mutated genes. From an initial of diversified mutant population in each cycle, several varieties of mutants reached the state of coexistence. In addition, a once extinct mutant gene was found to have the capacity to coexist with a gene pool of later cycle of molecular evolution. These results including the kinetic characteristics of the purified wild-type and mutant glutamine synthetases in the phylogenetic tree revealed that the enzyme activity has diverged rather than optimized to a fittest value during the course of evolution. Here, we proposed that the flexibility of the fitness of a gene in consequence to cellular interaction via the environment is an essential mechanism governing molecular evolution....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenski, R.E., Travisano, M.: Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 91, 6808–6814 (1994)

    Article  Google Scholar 

  2. Dykhuizen, D.E., Dean, A.: Enzyme activity and fitness: evolution in solution. TREE, 257–262 (1990)

    Google Scholar 

  3. Fontdevila, A., Mendez, J., Ayala, F.J., McDonald, J.: Maintenance of allozyme polymorphisms in experimental populations of Drosophila. Nature (London) 255, 149–151 (1975)

    Article  Google Scholar 

  4. Ayala, F.: Competition between species: Frequency dependence. Science 171, 820–824 (1971)

    Article  Google Scholar 

  5. Nei, M. (ed.): Molecular Evolutionary Genetics. Columbia University Press, New York (1987)

    Google Scholar 

  6. Helling, R.B., Vargas, C.N., Adams, J.: Evolution of Escherichia coli during growth in a constant environment. Genetics 116, 349–358 (1987)

    Google Scholar 

  7. Xu, W.-Z., Kashiwagi, A., Yomo, T., Urabe, I.: Fate of a mutant emerging at the initial stage of evolution. Res. Popul. Ecol. 38, 231–237 (1996)

    Article  Google Scholar 

  8. Kashiwagi, A., Kanaya, T., Yomo, T., Urabe, I.: How little can the difference be among the competitors at the initial stage of evolution? Res. Popul. Ecol. 40, 223–226 (1998)

    Article  Google Scholar 

  9. Chen, Y.-M., Backman, K., Magasanik, B.: Characterization of a gene, glnL, the product of which is involved in the regulation of nitrogen utilization in Escherichia coli. J. Bacteriol. 150, 214–220 (1982)

    Google Scholar 

  10. Xu, W.-Z., Fukuhara, J., Yamamoto, K., Yomo, T., Urabe, I.: Random mutagenesis of glutamine synthetase from Escherichia coli: Correlation between structure, activity, and fitness. J. Ferment. Bioeng. 77, 252–258 (1994)

    Article  Google Scholar 

  11. Miki, T., Yasukochi, T., Nagatani, H., Furuno, M., Orita, T., Yamada, H., Imito, T., Horiuchi, T.: Construction of a plasmid vector for the regulatable high level expression of eukaryotic genes in Escherichia coli: An application to overproduction of chicken lysozyme. Protein Eng. 1, 327–332 (1987)

    Article  Google Scholar 

  12. Maniatis, T., Fritsch, E.F., Sambrook, J. (eds.): Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor (1982)

    Google Scholar 

  13. Arakawa, T., Jongsareejit, B., Tatsumi, Y., Tanaka, K., Ikeda, K., Komatsubara, H., Inoue, H., Kawakami, B., Oka, M., Emi, S., Yomo, T., Shima, Y., Negoro, S., Urabe, I.: Application of N-terminally truncated DNA polymerase from Thermus thermophilus (Δ Tth polymerase) to DNA sequencing and polymerase chain reactions: Comparative study of Δ Tth and wild-type Tth polymerases. DNA Res. 3, 87–92 (1996)

    Article  Google Scholar 

  14. Lund, P.: UV-method with glutaminase and glutamate dehydrogenase. In: Bergmeyer, H.U., Bergmeyer, J., Grabl, M. (eds.) Methods of Enzymatic Analysis, 3rd edn., pp. 357–363 (1985)

    Google Scholar 

  15. Bidlingmeyer, B.A., Cohe, S.A., Tarvin, T.: Rapid analysis of amino acids using precolumn derivatization. J. Chromatogr. 336, 93–104 (1984)

    Article  Google Scholar 

  16. Cadwell, R.C., Joyce, G.: Randomization of genes by PCR mutagenesis. PCR Methods Applic. 2, 28–33 (1992)

    Google Scholar 

  17. Kimura, M. (ed.): The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  18. Yomo, T., Xu, W.-Z., Urabe, I.: Mathematical model allowing the coexistence of closely related competitors at the initial stage of evolution. Res. Popul. Ecol. 38, 239–247 (1996)

    Article  Google Scholar 

  19. Turner, P.E., Souza, V., Lenski, R.: Test of ecological mechanisms promoting the stable coexistence of two bacterial genotypes. Ecology 77, 2119–2129 (1996)

    Article  Google Scholar 

  20. Treves, D.S., Manning, S., Adams, J.: Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol. Biol. Evol. 15, 789–797 (1998)

    Google Scholar 

  21. Hartl, D.L., Dykhuizen, D.E., Dean, A.: Limits of adaptation: the evolution of selective neutrality. Genetics 111, 655–674 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kashiwagi, A., Noumachi, W., Katsuno, M., Alam, M.T., Urabe, I., Yomo, T. (2004). Experimental Molecular Evolution Showing Flexibility of Fitness Leading to Coexistence and Diversification in Biological System. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2004. Lecture Notes in Computer Science, vol 3141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27835-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27835-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23339-8

  • Online ISBN: 978-3-540-27835-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics