Skip to main content

Artificial Cellular Division by Self-Inspection

  • Conference paper
  • 800 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3141))

Abstract

This article describes a novel approach to the implementation on an electronic substrate of a process analogous to the cellular division of biological organisms. Cellular division is one of the two processes that allow the multicellular organization of complex living beings, and is therefore a key mechanism for the implementation of bio-inspired features such as development (growth) and self-repair (cicatrization). In particular, we shall describe the architecture and operation of a new kind of programmable logic device capable of realizing, in silicon, a cellular division process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Codd, E., F.: Cellular Automata. Academic Press, New York (1968)

    Google Scholar 

  2. Ibáñez, J., Anabitarte, D., Azpeitia, I., Barrera, O., Barrutieta, A., Blanco, H., Echarte, F.: Self-inspection based reproduction in cellular automata. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 564–576. Springer, Heidelberg (1995)

    Google Scholar 

  3. Jenkins, J.: Designing with FPGAs and CPLDs. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  4. Macias, N.: The PIG Paradigm: The Design and Use of a Massively Parallel Fine Grained Self-Reconfigurable Infinitely Scalable Architecture. In: Proc. 1st NASA/DOD Workshop on Evolvable Hardware (EH 1999), pp. 175–180. IEEE Comp. Soc., Los Alamitos (1999)

    Chapter  Google Scholar 

  5. Durbeck, L., Macias, N.: Defect-tolerant, fine-grained parallel testing of a Cell Matrix. In: Proc. SPIE ITCom 2002. Series 4867, pp. 71–85 (2002)

    Google Scholar 

  6. Durbeck, L., Macias, N.: Self-Assembling Circuits with Autonomous Fault Handling. In: Proc. 4th NASA/DOD Conference on Evolvable Hardware (EH 2002), pp. 46–55. IEEE Comp. Soc., Los Alamitos (1999)

    Google Scholar 

  7. Laing, R.: Automaton Models of Reproduction by Self-inspection. Journal of Theoretical Biology 66, 437–456 (1977)

    Article  MathSciNet  Google Scholar 

  8. Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Towards Robust Integrated Circuits: The Embryonics Approach. Proceedings of the IEEE 88, 516–541 (2000)

    Article  Google Scholar 

  9. Sanchez, E.: Field Programmable Gate Array (FPGA) Circuits. In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware 1995. LNCS, vol. 1062, pp. 1–18. Springer, Heidelberg (1996)

    Google Scholar 

  10. Tempesti, G., Mange, D., Stauffer, A.: The Embryonics Project: a Machine Made of Artificial Cells. Rivista di Biologia-Biology Forum 92, 143–188 (1999)

    Google Scholar 

  11. Trimberger, S.: Field-Programmable Gate Array Technology. Kluwer Academic, Boston (1994)

    MATH  Google Scholar 

  12. Tempesti, G., Mange, D., Stauffer, A., Teuscher, C.: The BioWall: an Electronic Tissue for Prototyping Bio-Inspired Systems. In: Proc. 4th NASA/DOD Conference on Evolvable Hardware (EH 2002), pp. 221–230. IEEE Comp. Soc., Los Alamitos (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petraglio, E., Mange, D., Stauffer, A., Tempesti, G. (2004). Artificial Cellular Division by Self-Inspection. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2004. Lecture Notes in Computer Science, vol 3141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27835-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27835-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23339-8

  • Online ISBN: 978-3-540-27835-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics