Skip to main content

Self-Reconfigurable Robots: Platforms for Emerging Functionality

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3139))

Abstract

We have studied modular self-reconfigurable robots that are capable of changing their overall shape and functionality by automatic recombination of homogenous robotic modules. Our latest model, called Modular Transformer (M-TRAN), is able to metamorphose into various 3-D configurations and generate robotic motions that are suitable to its configuration. This paper presents a review of hardware design of the module, some developed software for self-reconfiguration and motion generation, and some experimental results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fukuda, T., Nakagawa, S.: Approach to the Dynamically Reconfigurable Robotic System. J. Intell. Robot Sys. 1, 55–72 (1988)

    Article  Google Scholar 

  2. Murata, S., Kurokawa, H., Kokaji, S.: Self-Assembling Machine. In: Proc. 1994 IEEE Int. Conf. on Robotics and Automation, pp. 441–448 (1994)

    Google Scholar 

  3. Chirikjian, G., Pamecha, A., Ebert-Uphoff, I.: Evaluating Efficiency of Self- Reconfiguration in a Class of Modular Robots. J. Robotic Systems 12(5), 317–338 (1996)

    Article  Google Scholar 

  4. Tomita, K., Murata, S., Yoshida, E., Kurokawa, H., Kokaji, S.: Self-assembly and Self-Repair Method for Distributed Mechanical System. IEEE Trans. Robotics Automation 15(6), 1035–1045 (1999)

    Article  Google Scholar 

  5. Hosokawa, K., Tsujimori, T., Fujii, T., Kaetsu, H., Asama, H., Kuroda, Y., Endo, I.: Self-organizing Collective Robots with Morphogenesis in a Vertical Plane. In: Proc. 1998 IEEE Int. Conf. on Robotics and Automation, pp. 2858–2863 (1998)

    Google Scholar 

  6. Walter, J., Welch, J., Amato, N.: Distributed Reconfiguration of Hexagonal Metamorphic Robots in Two Dimensions. In: Proc. SPIE, Sensor Fusion and Decentralized Control in Robotic Systems III, pp. 441–453 (2000)

    Google Scholar 

  7. Yoshida, E., Murata, S., Tomita, K., Kurokawa, H., Kokaji, S.: An Experimental Study on a Self-repairing Modular Machine. Robotics and Autonomous Systems 29, 79–89 (1999)

    Article  Google Scholar 

  8. Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., Kokaji, S.: A Distributed Method for Reconfiguration of 3-D homogeneous structure. Advanced Robotics 13(4), 363–380 (1999)

    Article  Google Scholar 

  9. Yoshida, E., Kokaji, S., Murata, S., Tomita, K., Kurokawa, H.: Miniaturization of Self- Reconfigurable Robotic System using Shape Memory Alloy. J. Robotics Mechatronics 12(2), 1579–1585 (2000)

    Google Scholar 

  10. Kotay, K., Rus, D., Vona, M., McGray, C.: The Self-Reconfiguring Robotic Molecule. Proc. 1998 IEEE Int. Conf. on Robotics and Automation, 424–431 (1998)

    Google Scholar 

  11. Kotay, K., Rus, D.: Motion Synthesis for the Self-Reconfigurable Molecule. In: Proc. 1998 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 843–851 (1998)

    Google Scholar 

  12. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S.: A 3-D Self- Reconfigurable Structure. In: Proc. 1998 IEEE Int. Conf. on Robotics and Automation, pp. 432–439 (1998)

    Google Scholar 

  13. Ünsal, C., Kiliççöte, H., Khosla, P.: A modular self-reconfigurable bipartite robotic system: Implementation and motion planning. Autonomous Robots 10(1), 23–40 (2001)

    Article  MATH  Google Scholar 

  14. Rus, D., Vona, M.: Crystalline Robots: Self-reconfiguration with Compressible Unit Modules. Autonomous Robots 10(1), 107–124 (2001)

    Article  MATH  Google Scholar 

  15. Kotay, K., Rus, D.: Scalable parallel algorithm for configuration planning for selfreconfiguring robots. In: Proc. SPIE, Sensor Fusion and Decentralized Control in Robotic Systems III (2000)

    Google Scholar 

  16. Yim, M., Duff, D., Roufas, K.: PolyBot: a Modular Reconfigurable Robot. In: Proc. 2000 IEEE Int. Conf. on Robotics and Automation, pp. 514–520 (2000)

    Google Scholar 

  17. Yim, M., Zhang, Y., Lamping, J., Mao, E.: Distributed Control for 3D Metamorphosis. Autonomous Robots 10(1), 41–56 (2001)

    Article  MATH  Google Scholar 

  18. Nguyen, A., Guibas, L., Yim, M.: Controlled Module Density Helps Reconfiguration Planning. In: Workshop on Algorithmic Foundations of Robotics (WAFR), pp. 23–35 (2000)

    Google Scholar 

  19. Castano, A., Chokkalingam, R., Will, P.: Autonomous and Self-Sufficient CONRO Modules for Reconfigurable Robots. In: Distributed Autonomous Robotics, vol. 4, pp. 155–164. Springer, Berlin (2000)

    Google Scholar 

  20. Murata, S., Yoshida, E., Tomita, K., Kurokawa, H., Kamimura, A., Kokaji, S.: Hardware Design of Modular Robotic System. In: Proc. 2000 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.F-AIII-3-5 (2000)

    Google Scholar 

  21. Murata, S., Yoshida, E., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.: Homogeneous Distributed Mechanical Systems. In: Proc. Morpho Functional Machine Workshop, Tokyo, pp. 222–235 (2001)

    Google Scholar 

  22. Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.: Reconfiguration Planning for a Self-Assembling Modular Robot. In: Proc. Intl. Symp. on Assembly and Task Planning (ISATP), Fukuoka, pp. 276–281 (2001)

    Google Scholar 

  23. Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.: A Motion Planning Method for a Self-Reconfigurable Modular Robot. In: Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001) , Hawaii, CD-ROM, pp. 590–597 (2001)

    Google Scholar 

  24. Kamimura, A., Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., Kokaji, S.: Self- Reconfigurable Modular Robot, -Experiments on Reconfiguration and Locomotion -. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001) , Hawaii, CD-ROM (2001)

    Google Scholar 

  25. Kamimura, A., Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., Kokaji, S.: A Self- Reconfigurable Modular Robot (MTRAN) -Hardware and Motion Planning Software-. Distributed Autonomous Robotic Systems 5, 17–26 (2002)

    Google Scholar 

  26. Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Murata, S., Kokaji, S.: Self- Reconfigurable Modular Robot (M-TRAN) and Its Motion Design. In: Proc. Intl. Conf. Control, Automation, Robotics and Vision (ICARCV 2002), pp. 51–56 (2002)

    Google Scholar 

  27. Hirose, S., Imazato, M., Kudo, Y., Umetani, Y.: Internally-balanced Magnetic Unit. Advanced Robotics 3(4), 225–242 (1986)

    Article  Google Scholar 

  28. Chirikjian, G., Pamecha, A., Ebert-Uphoff, I.: Evaluating efficiency of selfreconfiguration in a class of modular robots. J. of Robotic Systems 13(5), 317–338 (1996)

    Article  MATH  Google Scholar 

  29. Chiang, C.-J., Chirikjian, G.: Modular robot motion planning using similarity metrics. Autonomous Robots 10, 91–106 (2001)

    Article  MATH  Google Scholar 

  30. Miyashita, K., Kokaji, S.: Navigating modular robots in the face of heuristic depressions. In: Proc. of Distributed Autonomous Robotic System 5 (DARS-2002), pp. 7–26 (2002)

    Google Scholar 

  31. Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Murata, S., Kokaji, S.: Automatic Locomotion Pattern Generation for Modular Robots. In: Proc. IEEE Intl. Conf. on Roboticsn and Automation (ICRA), pp. 714–720 (2003)

    Google Scholar 

  32. Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm generators. Biolog. Cybern. 56, 345–353 (1987)

    Article  Google Scholar 

  33. Taga, G.: A model of the neuro-musculo-skeletal system for human locomotion II –realtime adaptability under various constraints. Biolog. Cybern. 73, 113–121 (1995)

    Article  MATH  Google Scholar 

  34. Kimura, K., et al.: Realization of dynamic walking and running of the quadruped using neural oscillator. Autonomous Robots 7(3), 247–258 (1999)

    Article  Google Scholar 

  35. Hase, K., et al.: Development of three-dimensional whole-body musculoskeletal model for various motion analyses. JSME Int. J. C40, 25–32 (1997)

    Google Scholar 

  36. Ono, I., Kobayashi, S.: A Real-coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distribution Crossover. In: Proc. 7th ICGA, pp. 246–253 (1997)

    Google Scholar 

  37. M-TRAN II Web site, http://unit.aist.go.jp/is/dsysd/mtran/English/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murata, S., Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S. (2004). Self-Reconfigurable Robots: Platforms for Emerging Functionality. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds) Embodied Artificial Intelligence. Lecture Notes in Computer Science(), vol 3139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27833-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27833-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22484-6

  • Online ISBN: 978-3-540-27833-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics