Advertisement

Analysis of a Cylindrical Microstrip Antenna by the Nonorthogonal FDTD Method and Parallel Processing

  • Ronaldo O. dos Santos
  • Rodrigo M. S. de Oliveira
  • Fabricio Jose B. Barros
  • Carlos Leonidas da S.S. Sobrinho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3124)

Abstract

A computational code has been developed for analyzing 3-D radiation problems in curved geometries. To accomplish this, a suitable formulation is developed considering Maxwell equations in a general coordinate system and numerically solved by the use of a parallel curvilinear finite-difference time-domain (FDTD) method. In order to validate the computational code, the method analyzes a microstrip antenna mounted on a curved surface. The results obtained by the developed code are then compared to those generated by the conventional (orthogonal) FDTD method and by experimental measurements.

Keywords

Message Passing Interface Microstrip Antenna FDTD Method Radiation Problem Numerical Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Esa, M., Nawawi, N.A.A., Subahir, S.: Investigation of Lowering the Operating Frequency of a Microwave Device Using Simulation. In: X Simposio Brasileiro de Microondas e Optoeletronica, pp. 121–125 (2002)Google Scholar
  2. 2.
    Yang, F., Zhang, X.X., Ye, X., R-Sammi, Y.: Wide-band E-shaped patch antennas for wireless communications. In: IEEE Trans. On Antennas and prop., vol. Ap-49, pp. 1094–1100 (2001)Google Scholar
  3. 3.
    Holland, R.: Finite-Difference Solutions of Maxwell’s Equations in Generalized Nonorthogonal Coordinates. IEEE Trans. on Nuclear Science NS- 30(6), 4589–4591 (1983)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)zbMATHGoogle Scholar
  5. 5.
    Roden, J.A.: Broadband Electromagnetic Analysis of Complex Structures with the Finite-Difference Time-domain Technique in General Curvilinear Coordinates, Ph.D. Dissertation, University of Kentucky (1997) Google Scholar
  6. 6.
    Fusco, M.: FDTD algorithm in curvilinear coordinates. IEEE Trans. Antennas Propagat. AP-38, 76–88 (1990)CrossRefGoogle Scholar
  7. 7.
    Lee, J.F., Palendech, R., Mittra, R.: Modeling Three-Dimensional Discontinuities in Waveguides Using Non-orthogonal FDTD Algorithm. IEEE Transactions on Microwave Theory and Techniques MTT-40(2) (1992)Google Scholar
  8. 8.
    Almasi, G.S., Gohlied, A.: Hihgly Parallel Computing, 2nd edn. Benjamim/Cummings Publishing (1994)Google Scholar
  9. 9.
    Andrews, G.: Foundations of Multithreaded: Parallel and Distributed Programming. Addison-Wesley, Reading (2000)Google Scholar
  10. 10.
    Message Passing Interface (MPI) on the Web, http://www.mpi.nd.edu/lam
  11. 11.
    Araujo, J.S., Santos, R.O., Sobrinho, C.L.S.S., Rocha, J.M., Guesdes, L.A., Kawasaki, R.Y.: Analysis of Antennas by FDTD Method Using Parallel Processing with MPI. In: International Microwave and Optoeletronics Conference, Iguazu Falls, vol. 2, pp. 1049–1054 (2003)Google Scholar
  12. 12.
    Sheen, D.M., Ali, S.M., Abouzahra, M.D., Kong, J.A.: Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits. IEEE Trans. Microwave Theory Tech. MTT-38(7), 849–857 (1990)CrossRefGoogle Scholar
  13. 13.
    Kashiwa, T., Onishi, T., Fukai, I.: Analysis of Miscrostrip Antennas on a Curved Surface Using the Conformal Grids FDTD Method. IEEE Trans. Antennas Propagat. AP-42(3), 423–427 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ronaldo O. dos Santos
    • 1
  • Rodrigo M. S. de Oliveira
    • 2
  • Fabricio Jose B. Barros
    • 2
  • Carlos Leonidas da S.S. Sobrinho
    • 2
  1. 1.Instituto de Estudos Superiores da Amazonia (IESAM)BelemBrazil
  2. 2.Federal University of Para (UFPA)BelemBrazil

Personalised recommendations