Advertisement

Smart Strategies for Single-Photon Detection

  • J. B. R. Silva
  • R. V. Ramos
  • E. C. Giraudo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3124)

Abstract

The key device in single-photon detectors is the avalanche photodiode. When used in quantum key distribution, a protocol for key distribution with security guaranteed by quantum physics laws, the afterpulsing, false counts caused by electrons trapped in the gain region, limits strongly the maximal transmission rate of the system since we have, after an avalanche have occurred, to turn off the photodiode for a fixed time before enabling the avalanche photodiode to receive another photon. In this paper, aiming to overcome the afterpulsing, three smart strategies for single-photon detection are discussed using analytical and numerical procedures.

Keywords

Transmission Rate Quantum Cryptography Avalanche Photodiode Optical Coupler Incoming Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental Quantum Cryptography. Journal of Cryptology 5, 3–28 (1992)zbMATHCrossRefGoogle Scholar
  2. 2.
    Phoenix, S.J.D., Townsend, P.D.: Quantum cryptography: How to beat the code breakers using quantum mechanics. Contemporary Physics 36, 165–195 (1995)CrossRefGoogle Scholar
  3. 3.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. quant-ph/0101098 (2001), http://xxx.lanl.gov
  4. 4.
    Ribordy, G., Gautier, J.D., Zbinden, H., Gisin, N.: Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters. Applied Optics 37, 2272–2277 (1998)CrossRefGoogle Scholar
  5. 5.
    Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical Quantum Number Generator. quant-ph/9907006 (1999), http://xxx.lanl.gov
  6. 6.
    Gibson, F.: Experimental evaluation of quantum cryptography system for 1550nm. Master of Science thesis, IMIT-QEO, Kungl Tekniska Högskolan, Sweden (1998)Google Scholar
  7. 7.
    Ramos, R.V., Thé, G.A.P.: Single-photon detectors for quantum key distribution in 1550 nm: simulations and experimental results. Microwave and Optical Technology Letters 32(2), 136–139 (2003)CrossRefGoogle Scholar
  8. 8.
    Bourennane, M., Ljunggren, D., Karlsson, A., Jonsson, P., Hening, A., Ciscar, J.P.: Experimental long wavelength quantum cryptography: from single-photon transmission to key extraction protocols. Journal of Modern Optics 47(2/3), 563–579 (2000)MathSciNetGoogle Scholar
  9. 9.
    Vylegjanine, K.: High-speed single-photon detectors for quantum cryptosystems. Master of Science thesis, Dept. of Physical Electronic, NTNU, Norway (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. B. R. Silva
    • 1
  • R. V. Ramos
    • 1
  • E. C. Giraudo
    • 1
  1. 1.Federal University of CearaFortalezaBrasil

Personalised recommendations