Advertisement

Wavelength Conversion with 2R-Regeneration by UL-SOA Induced Chirp Filtering

  • C. de Mello Gallep
  • E. Conforti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3124)

Abstract

Simulations of ultra-long (10 mm) semiconductor optical amplifier’s induced optical chirp (cross-phase modulation), with posterior conversion to amplitude modulation by proper filtering, show promising results for wavelength conversion with pulse re-amplifying and re-shaping in 10 Gbps and 20 Gbps. The dependences on filter bandwidth and optical input power (high, medium and low levels) are analyzed for conversion of originally clean and dirty eye-diagrams at the input gate within their reshaping capability.

Keywords

Semiconductor Optical Amplifier Wavelength Conversion Gain Coefficient Optical Channel Frequency Chirp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stubkjaer, K.: Semiconductor Optical Amplifier-based All-Optical Gates for High-Speed Optical Processing. IEEE J. Selected Top. Quantum Electr. 6, 1428–1435 (2000)CrossRefGoogle Scholar
  2. 2.
    Conforti, E., Gallep, C.M., Bordonalli, A.C.: Decreasing Electro-Optic Switching Time in Semiconductor Optical Amplifiers by Using Pre-Pulse Induced Chirp Filtering. In: Mørk, J., Srivastava, A. (eds.) TOPS 1992, Optical Amplifiers and Their Applications 2003, Optical Society of America, vol. 92, pp. 111–116 (2003)Google Scholar
  3. 3.
    Leuthold, J., Mikkelsen, B., Behringer, R.E., Raybon, G., Joyner, C.H., Besse, P.A.: Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration. IEEE Photon. Techn. Letters 13, 860–862 (2001)CrossRefGoogle Scholar
  4. 4.
    Manning, R.J., Ellis, A.D., Poustie, A.J., Blew, K.J.: Semiconductor Laser Amplifier for Ultrafast All-Optical Signal Processing. J. Optical Society of America B 14, 3204–3216 (1997)CrossRefGoogle Scholar
  5. 5.
    Leuthold, J., et al.: Nonblocking All-Optical Cross Connect Based on Regenerative All Optical Wavelength Converter in a Transparent Demonstration over 42 nodes and 16800 km. J. Lightwave Technol. 21, 2863–2870 (2003)CrossRefGoogle Scholar
  6. 6.
    Gallep, C.M., Conforti, E.: Simulations on Picosecond Non-Linear Electro-Optic Switching Using an ASE-calibrated Optical Amplifier Model. Optics Communication 236/1-3, 131–139 (2004)CrossRefGoogle Scholar
  7. 7.
    Gallep, C.M.: Reduction of Electro-Optic Switching Time in Semiconductor Optical Amplifiers, PhD thesis (in Portuguese), State University of Campinas - Unicamp (2003), Available at www.ifi.unicamp.br/photon
  8. 8.
    Lee, H., Yoon, H., Kim, Y., Jeong, J.: Theoretical Study of Frequency Chirping and Extintion Ratio of Wavelength-Converted Optical Signals by XGM and XPM using SOAś. IEEE J. of Quantum Electr. 35, 1213–1219 (1999)CrossRefGoogle Scholar
  9. 9.
    Yu, J., Jeppensen, P.: Improvement of Cascaded Semiconductor Optical Amplifier Gates by Using Holding Light Injection. IEEE J. Lightwave Tech. 19, 614–623 (2001)CrossRefGoogle Scholar
  10. 10.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • C. de Mello Gallep
    • 1
  • E. Conforti
    • 2
  1. 1.Div. Tecnologia em TelecomunicaçõesCESET/UnicampLimeira/SPBrasil
  2. 2.Dep. Microondas e ÓpticaFEEC/ UnicampCampinas/SPBrazil

Personalised recommendations