A Powerful Tool Based on Finite Element Method for Designing Photonic Crystal Devices

  • A. CerqueiraJr.
  • K. Z. Nobrega
  • F. Di Pasquale
  • H. E. Hernandez-Figueroa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3124)


Photonic crystal devices have been regarded as the key solution for overcoming the limitations of conventional optical devices. In recent years, their novel and unique features have been investigated and exploited by many researches. This work presents a powerful design tool based on Finite Element Method, FEM, to be applied in the design and optimization of these devices, such as Photonic Crystal Fibers (PCFs) and integrated optical waveguides with photonic crystals. The full vectorial FEM code which has been implemented can be used for accurate modal and dispersion analysis. Some examples are presented concerning a novel approach for designing large-mode-area endlessly single-mode PCF and optical waveguides with photonic crystals with reduced critical power of the optical bistability phenomenon.


Photonic Crystal Optical Waveguide Critical Power Optical Bistability Integrate Optical Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode fiber with photonic crystal cladding. Opt. Letters 21, 1547–1549 (1996)CrossRefGoogle Scholar
  2. 2.
    Silvestre, E., Russell, P.S.J., Birks, T.A., Knight, J.C.: Endlessly single-mode heat-sink waveguide. In: CLEO, p. 428 (1998)Google Scholar
  3. 3.
    Peyrilloux, A., Chartier, T., Hideur, A., Berthelot, L., Mlin, G., Lempereur, S., Pagnoux, D., Roy, P.: Theoretical and experimental study of the birefringence of a photonic crystal fiber. Journal of lightwave technology 21, 536–539 (2003)CrossRefGoogle Scholar
  4. 4.
    Birks, T.A., Knight, J.C.: Properties of photonic crystal fiber and the effective index model. Journal of Optical Society of America A 15, 748–752 (1998)CrossRefGoogle Scholar
  5. 5.
    Russell, P.S.J.: Photonic crystal fibers. Science 229, 358–362 (2003)CrossRefGoogle Scholar
  6. 6.
    Di Pasquale, F., Zoboli, M., Federighi, M., Massarek, I.: Finite-element modeling of silica waveguide amplifiers with high erbium concentration. Journal of Quantum Electronics 30, 1277–1282 (1994)CrossRefGoogle Scholar
  7. 7.
    Hernandez-Figueroa, H.E., Fernandez, F.A., Lu, Y., Davies, J.B.: Vectorial finite element modeling of 2d leaky waveguides. Transactions on magnetics 31, 1710–1713 (1995)CrossRefGoogle Scholar
  8. 8.
    Jin, J.: The Finite Element Method in electromagnetics, 2nd edn. John Wiley and Sons, Chichester (2002)zbMATHGoogle Scholar
  9. 9.
    Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P.S.J., de Sandro, P.D.: Large mode area photonic crystal fibre. Electronics Letters 34, 1347–1348 (1998)CrossRefGoogle Scholar
  10. 10.
    Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Optics letters 22, 961–963 (1997)CrossRefGoogle Scholar
  11. 11.
    Agrawal, G.P.: Nonlinear fiber optics. Academic (1995)Google Scholar
  12. 12.
    Furusawa, K., Malinowski, A., Price, H.V., Monro, T.M., Sahu, J.K., Nilsson, J., Richardson, D.J.: Highly efficient all-glass double-clad ytterbium doped holey fiber laser. In: CLEO, pp. 46–47 (2002)Google Scholar
  13. 13.
    Shen, L.P., Huang, W.-P., Chen, G.X., Jian, S.S.: Design and optimization of photonic crystal fibers for broad-band dispersion compensation. Transactions on magnetics 15, 540–542 (2003)Google Scholar
  14. 14.
    Nobrega, K.Z., Hernandez-Figueroa, H.E.: Optical bistability in nonlinear waveguides with photonic crystals. To appear Microwave and Optical Technology Letters (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. CerqueiraJr.
    • 1
  • K. Z. Nobrega
    • 2
  • F. Di Pasquale
    • 1
  • H. E. Hernandez-Figueroa
    • 2
  1. 1.Scuola Superiore Sant’Anna di Studi Universitari e di PerfezionamentoPisaItaly
  2. 2.Microwave and Optics Department, DMO, Electrical and Computer Engineering FacultyState University of Campinas, UNICAMPBrazil

Personalised recommendations