Advertisement

Competitive Neural Networks for Fault Detection and Diagnosis in 3G Cellular Systems

  • G. A. Barreto
  • J. C. M. Mota
  • L. G. M. Souza
  • R. A. Frota
  • L. Aguayo
  • J. S. Yamamoto
  • P. E. O. Macedo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3124)

Abstract

We propose a new approach to fault detection and diagnosis in third-generation (3G) cellular networks using competitive neural algorithms. For density estimation purposes, a given neural model is trained with data vectors representing normal behavior of a CDMA2000 cellular system. After training, a normality profile is built from the sample distribution of the quantization errors of the training vectors. Then, we find empirical confidence intervals for testing hypotheses of normal/abnormal functioning of the cellular network. The trained network is also used to generate inference rules that identify the causes of the faults. We compare the performance of four neural algorithms and the results suggest that the proposed approaches outperform current methods.

Keywords

False Alarm Fault Detection Quantization Error Neural Model Training Epoch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prasad, R., Mohr, W., Konäuser, W.: Third Generation Mobile Communication Systems - Universal Personal Communications. Artech House Publishers (2000)Google Scholar
  2. 2.
    Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and Adaptive Systems: Fundamentals through Simulations. John Wiley & Sons, Chichester (2000)Google Scholar
  3. 3.
    Ahalt, S., Krishnamurthy, A., Cheen, P., Melton, D.: Competitive learning algorthms for vector quantization. Neural Networks 3, 277–290 (1990)CrossRefGoogle Scholar
  4. 4.
    Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78, 1464–1480 (1990)CrossRefGoogle Scholar
  5. 5.
    Martinetz, T.M., Schulten, K.J.: A ‘neural-gas’ network learns topologies. In: Kohonen, T., Makisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 397–402. North-Holland, Amsterdam (1991)Google Scholar
  6. 6.
    Hammer, B., Rechtien, A., Strickert, M., Villmann, T.: Rule extraction from selforganizing networks. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 877–882. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Laiho, J., Kylväjä, M., Höglund, A.: Utilisation of advanced analysis methods in UMTS networks. In: Proceedings of the IEEE Vehicular Technology Conference (VTS/spring), Birmingham, Alabama, pp. 726–730 (2002)Google Scholar
  8. 8.
    Binzer, T., Landstorfer, F.M.: Radio network planning with neural networks. In: Proceedings of the IEEE Vehicular Technology Conference (VTS/fall), Boston, MA, pp. 811–817 (2000)Google Scholar
  9. 9.
    Raivio, K., Simula, O., Laiho, J.: Neural analysis of mobile radio access network. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), San Jose, California, pp. 457–464 (2001)Google Scholar
  10. 10.
    Raivio, K., Simula, O., Laiho, J., Lehtimäki, P.: Analysis of mobile radio access network using the Self-Organizing Map. In: Proceedings of the IPIP/IEEE International Symposium on Integrated Network Management, Colorado Springs, Colorado, pp. 439–451 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • G. A. Barreto
    • 1
  • J. C. M. Mota
    • 1
  • L. G. M. Souza
    • 1
  • R. A. Frota
    • 1
  • L. Aguayo
    • 1
  • J. S. Yamamoto
    • 2
  • P. E. O. Macedo
    • 1
  1. 1.Department of Teleinformatics EngineeringFederal University of CearáFortalezaBrazil
  2. 2.CPqD Telecom & IT SolutionsCampinasBrazil

Personalised recommendations