Achieving Channel Capacity with Low Complexity RS-BTC Using QPSK over AWGN Channel

  • Rong Zhou
  • Annie Picart
  • Ramesh Pyndiah
  • André Goalic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3124)


High code rate Block Turbo Codes (BTC) using Bose-Chaudhuri-Hocquenghem (BCH) codes have already demonstrated near Shannon performances for Quadrature Phase-Shift Keying (QPSK) over Additive White Gaussian Noise (AWGN) channel. We show here that reliable transmission can be achieved at less than 1 dB from Shannon limit with very low complexity Reed-Solomon (RS) BTC under the same transmission condition. This is due to a proper choice of RS component codes used to construct RS product codes. Furthermore the size of the coded blocks required for RS-BTC to achieve a given code rate is much smaller than for BCH-BTC which is very attractive for practical considerations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit errorcorrecting coding and decoding: Turbo-codes. In: IEEE Int. Conf. on Comm. ICC 1993, May 1993, vol. 2/3, pp. 1064–1071 (1993)Google Scholar
  2. 2.
    Pyndiah, R., Glavieux, A., Picart, A., Jacq, S.: Near optimum decoding of product codes. In: Proc. of IEEE Globecom 1994, November-December 1994, vol. 1/3, pp. 339–343 (1994)Google Scholar
  3. 3.
    Gallagar, R.G.: Low Density Parity Check Codes. IRE Trans. on Information Theory, 21–28 (January 1962)Google Scholar
  4. 4.
    Cuevas, J., Adde, P., Kerouedan, S., Pyndiah, R.: New architecture for high data rate turbo decoding of product code. In: Globecom 2002, November 2001, vol. 2, pp. 339–343 (2002)Google Scholar
  5. 5.
    Aitsab, O., Pyndiah, R.: Performance of Reed-Solomon block turbo code. In: Globecom 1996, November 1972, vol. 1, pp. 121–125 (1996)Google Scholar
  6. 6.
    Elias, P.: Error-free coding. IRE Trans. on Information Theory IT-4, 29–37 (1954)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Macwilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes, pp. 567–580. North-Holland publishing company, Amsterdam (1978)Google Scholar
  8. 8.
    Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill Book Company, New York (1968)zbMATHGoogle Scholar
  9. 9.
    Chase, D.: A class of algorithms for decoding block codes with channel measurement information. IEEE Trans. Inform. Theory IT-8 (January 1972)Google Scholar
  10. 10.
    Pyndiah, R., Adde, P.: Performance of high code rate BTC for non-traditional applications. In: 3rd International symposium on turbo codes & related topics (September 2003)Google Scholar
  11. 11.
    Clark Jr., G.C., Bibb Cain, J.: Error-Correction coding for digital communications. Plenum Press, New York (1981)Google Scholar
  12. 12.
    Gallagar, R.G.: Information Theory and Reliable Communication. John Wiley & Sons, New-York (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rong Zhou
    • 1
  • Annie Picart
    • 1
  • Ramesh Pyndiah
    • 1
  • André Goalic
    • 1
  1. 1.GET-ENST de Bretagne, Département SCTAMCIC (CNRS-FRE 2658)Brest CedexFrance

Personalised recommendations