Advertisement

Achieving Channel Capacity with Low Complexity RS-BTC Using QPSK over AWGN Channel

  • Rong Zhou
  • Annie Picart
  • Ramesh Pyndiah
  • André Goalic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3124)

Abstract

High code rate Block Turbo Codes (BTC) using Bose-Chaudhuri-Hocquenghem (BCH) codes have already demonstrated near Shannon performances for Quadrature Phase-Shift Keying (QPSK) over Additive White Gaussian Noise (AWGN) channel. We show here that reliable transmission can be achieved at less than 1 dB from Shannon limit with very low complexity Reed-Solomon (RS) BTC under the same transmission condition. This is due to a proper choice of RS component codes used to construct RS product codes. Furthermore the size of the coded blocks required for RS-BTC to achieve a given code rate is much smaller than for BCH-BTC which is very attractive for practical considerations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit errorcorrecting coding and decoding: Turbo-codes. In: IEEE Int. Conf. on Comm. ICC 1993, May 1993, vol. 2/3, pp. 1064–1071 (1993)Google Scholar
  2. 2.
    Pyndiah, R., Glavieux, A., Picart, A., Jacq, S.: Near optimum decoding of product codes. In: Proc. of IEEE Globecom 1994, November-December 1994, vol. 1/3, pp. 339–343 (1994)Google Scholar
  3. 3.
    Gallagar, R.G.: Low Density Parity Check Codes. IRE Trans. on Information Theory, 21–28 (January 1962)Google Scholar
  4. 4.
    Cuevas, J., Adde, P., Kerouedan, S., Pyndiah, R.: New architecture for high data rate turbo decoding of product code. In: Globecom 2002, November 2001, vol. 2, pp. 339–343 (2002)Google Scholar
  5. 5.
    Aitsab, O., Pyndiah, R.: Performance of Reed-Solomon block turbo code. In: Globecom 1996, November 1972, vol. 1, pp. 121–125 (1996)Google Scholar
  6. 6.
    Elias, P.: Error-free coding. IRE Trans. on Information Theory IT-4, 29–37 (1954)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Macwilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes, pp. 567–580. North-Holland publishing company, Amsterdam (1978)Google Scholar
  8. 8.
    Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill Book Company, New York (1968)zbMATHGoogle Scholar
  9. 9.
    Chase, D.: A class of algorithms for decoding block codes with channel measurement information. IEEE Trans. Inform. Theory IT-8 (January 1972)Google Scholar
  10. 10.
    Pyndiah, R., Adde, P.: Performance of high code rate BTC for non-traditional applications. In: 3rd International symposium on turbo codes & related topics (September 2003)Google Scholar
  11. 11.
    Clark Jr., G.C., Bibb Cain, J.: Error-Correction coding for digital communications. Plenum Press, New York (1981)Google Scholar
  12. 12.
    Gallagar, R.G.: Information Theory and Reliable Communication. John Wiley & Sons, New-York (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rong Zhou
    • 1
  • Annie Picart
    • 1
  • Ramesh Pyndiah
    • 1
  • André Goalic
    • 1
  1. 1.GET-ENST de Bretagne, Département SCTAMCIC (CNRS-FRE 2658)Brest CedexFrance

Personalised recommendations