Advertisement

Trellis Code Construction for the 2-User Binary Adder Channel

  • Valdemar C. da RochaJr.
  • Maria de Lourdes M. G. Alcoforado
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3124)

Abstract

This paper introduces a construction technique for trellis codes on the two-user binary adder channel (2-BAC). A condition for unique decodability for convolutional codes on the 2-BAC is derived, with an immediate extension for trellis codes. A pair of block codes (uniquely decodable on the 2-BAC) is used as a filter to eliminate just those paths through the trellis that would lead to ambiguity at the decoder. This approach in principle does not limit the sum rate of the resulting code pair.

Keywords

Linear Code Block Code Convolutional Code Code Construction Trellis Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kasami, T., Lin, S.: Coding for a multiple-access channel. IEEE Trans. on Inform. Theory IT-22(2), 129–137 (1976)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Liao, H.H.J.: Multiple access channels, Ph.D. Dissertation, Dep. Elec. Eng., Univ. of Hawaii, Honolulu (1972) Google Scholar
  3. 3.
    Ahlswede, R.: Multi-way communications channels. In: 2nd Int. Symp. on Information Transmission, USSR (1971)Google Scholar
  4. 4.
    Slepian, D., Wolf, J.K.: A coding theorem for multiple-acces channels. Bell Syst. Tech. J. 51, 1037–1076 (1973)MathSciNetGoogle Scholar
  5. 5.
    Massey, J.L.: On codes for the two-user binary adder channel. In: Oberwolfach Information Theory Workshop, Germany (April 1992)Google Scholar
  6. 6.
    da Rocha Jr., V.C., Massey, J.L.: A new approach to the design of codes for the binary adder channel. In: Ganley, M.J. (ed.) Cryptography and Coding III. IMA Conf. Series, vol. 45, pp. 179–185. Clarendon Press, Oxford (1993)Google Scholar
  7. 7.
    Cabral, H.A., da Rocha Jr., V.C.: Linear code construction for the 2-user binary adder channel. In: IEEE Int. Symp. on Info. Theory, Whistler, Canada, p. 497 (1995)Google Scholar
  8. 8.
    Ahlswede, R., Balakirsky, V.B.: Construction of uniquely decodable codes for the two-user binary adder channel. IEEE Trans. on Inform. Theory 45(1), 326–330 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Khachatrian, G.H.: A survey of coding methods for the adder channel. In: Althofer, I. (ed.) Numbers, Information and Complexity (dedicated to Rudolph Ahlswede on the occasion of his 60th birthday), Kluwer, Dordrecht (2000)Google Scholar
  10. 10.
    Peterson, R., Costello Jr., D.J.: Binary convolutional codes for a multipleaccess channel. IEEE Trans. on Info. Theory 25(1), 101–105 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lin, S., Costello Jr., D.: Error Control Coding: Fundamentals and Applications. Prentice-Hall Inc., Englewood Cliffs (1983)Google Scholar
  12. 12.
    Urbanke, R., Li, Q.: The zero-error capacity region of the 2-user synchronous BAC is strictly smaller than its Shannon capacity, http://lthcwww.epfl.ch/~ruediger/publications.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Valdemar C. da RochaJr.
    • 1
  • Maria de Lourdes M. G. Alcoforado
    • 1
  1. 1.Communications Research Group – CODEC, Department of Electronics and SystemsFederal University of PernambucoRecifeBrazil

Personalised recommendations