Zero-Error Capacity of a Quantum Channel

  • Rex A. C. Medeiros
  • Francisco M. de Assis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3124)


The zero-error capacity of a discrete classical channel was first defined by Shannon as the least upper bound of rates for which one transmits information with zero probability of error. Here, we extend the concept of zero-error capacity for a noisy quantum channel. The necessary requirement for a quantum channel have zero-error capacity greater than zero is given. Finally, we give some directions on how to calculate the zero-error capacity of such channels.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shannon, C.E.: A mathematical theory of communication. The Bell System Tech. J. 27, 379–423, 623–656 (1948)Google Scholar
  2. 2.
    Shannon, C.E.: The zero error capaciy of a noisy channel. IRE Trans. Inform. Theory IT-2(3), 8–19 (1956)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25(1), 1–7 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Köner, J., Orlitsky, A.: Zero-error information theory. IEEE Trans. Inform. Theory 44(6), 2207–2229 (1998)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons Inc., New York (1991)zbMATHCrossRefGoogle Scholar
  6. 6.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rex A. C. Medeiros
    • 1
  • Francisco M. de Assis
    • 1
  1. 1.Department of Electrical EngineeringFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations