Skip to main content

Towards Automatic Selection of the Regularization Parameters in Emission Tomgraphy by Fourier Synthesis

  • Conference paper
Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis (MMBIA 2004, CVAMIA 2004)

Abstract

The problem of image reconstruction in emission tomography in an ill-posed inverse problem. The methodology FRECT (Fourier regularized computed tomography) allows not only for a priori analysis of the stability of the reconstruction process but also for an exact definition of the resolution in the slices. Its natural regularization parameter, namely the cutoff frequency ν of the filter underlying the definition of the FRECT solution, can be calibrated by estimating the condition number for a range of values of ν. We first outline the methodology FRECT. We then discuss the numerical strategies which can be implemented in order to estimate the condition numbers of large matrices. Finally, we present a few results obtained in the context of SPECT reconstructions, and discuss the possibility to determine automatically the best possible cutoff frequency from the analysis of the stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett, H.H., Wilson, D.W., Tsui, B.M.W.: Noise properties of the EM algorithm:1-Theory 2- Monte Carlo simulations. Phys. Med. Biol. 39, 833–873 (1994)

    Article  Google Scholar 

  2. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A lilited memory algorithm for bound constrained optimization. Technical Report NAM-08, Northwestern University (1994)

    Google Scholar 

  3. Cullum, J., Willoughby, R., Lake, M.: A Lanczos algorithm for computing singular values and vectors of large matrices. SIAM J. Sci. Stat. Comput. 4(2), 196–215 (1983)

    MathSciNet  Google Scholar 

  4. Falcon, C., Juvells, I., Pavia, J., Ros, D.: Evaluation of a cross-validation stopping rule in MLE SPECT reconstruction. Phys. Med. Biol. 43, 1271–1285 (1998)

    Article  Google Scholar 

  5. Fessler, J.A.: Mean and variance of implicitly defined biased estimator (such as penalized maximum likelihood): applications to tomography. IEEE Trans. Image Processing 5, 493–506 (1996)

    Article  Google Scholar 

  6. Flemming, H.E.: Equivalence of regularization and truncated iteration in the solution of ill-posed image reconstruction problems. Linear Algebra and its applications 130, 133–150 (1990)

    Article  MathSciNet  Google Scholar 

  7. Formiconi, A.R., Pupi, A., Passeri, A.: Compensation of spatial system response in SPECT with conjugate gradient reconstruction technique. Phys. Med. Biol. 34, 69–84 (1989)

    Article  Google Scholar 

  8. Gillen, G.J.: A simple method for the measurements of local statistical noise level in SPECT. Phys. Med. Biol. 37, 1379–1573 (1992)

    Google Scholar 

  9. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solution. Numerische Mathematik 14, 403–420 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  11. Green, P.: Bayesian reconstructions from emission tomography using a modified EM algorithm. IEEE Trans. Med. Imaging 9, 84–93 (1990)

    Article  Google Scholar 

  12. Hebert, T.J.: Statistical stopping criteria for iterative maximum likelihood reconstruction of emission images. Phys. Med. Biol. 35, 1221–1232 (1990)

    Article  Google Scholar 

  13. Herman, G.T.: On the noise in images produced by computed tomography. Computer Graphics and Image Processing 12, 271–285 (1980)

    Article  Google Scholar 

  14. Higdon, D.M., Bowsher, J.E., Johnson, V.E., Turkington, T.G., Gilland, D.R., Jaszczak, R.J.: Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data. IEEE Trans. Med. Imaging 16, 516–526 (1997)

    Article  Google Scholar 

  15. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2002)

    Google Scholar 

  16. Huesman, R.H.: The effects of a finite number of projection angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstructions. Phys. Med. Biol. 22, 511–521 (1977)

    Article  Google Scholar 

  17. Kaufman, L., Neumaier, A.: PET regularization by enveloppe guided conjugate gradients. IEEE Trans. Med. Imaging 15, 385–389 (1993)

    Article  Google Scholar 

  18. Kawata, S., Nalcioglu, O.: Constrained iterative reconstruction by the conjugate gradient method. IEEE Trans. Med. Imaging 4, 65–71 (1985)

    Article  Google Scholar 

  19. Kim, H.J., Zeberg, B.R., Reba, R.C.: Evaluation of reconstruction algorithms in SPECT neuroimaging: I-Comparison of statistical noise in SPECT neuroimages with ’naive’ and ’realistic’ predictions. Phys. Med. Biol. 38, 863–881 (1993)

    Article  Google Scholar 

  20. Lalush, D.S., Tsui, B.M.W.: Simulation evaluation of Gibbs prior distributions for use in maximum a posteriori SPECT reconstructions. IEEE Trans. Med. Imaging 11, 267–275 (1992)

    Article  Google Scholar 

  21. Lalush, D.S., Tsu, B.M.W.: A fast and stable weighted least squares MAP conjugate gradient algorithm for SPECT. In: Proceedings of the 40th annual meeting, IEEE Trans. Med. Imaging, vol. 34, p. 101 (1993)

    Google Scholar 

  22. Lalush, D.S., Tsui, B.M.W.: A fast and stable maximum a posteriori conjugate gradient reconstruction algorithm. Med. Phys. 22, 1273–1284 (1995)

    Article  Google Scholar 

  23. Lannes, A., Anterrieu, E., Bouyoucef, K.: Fourier interpolation and reconstruction via Shannon-type techniques; part I: Regularization principle. Journal of Modern Optics 41(8), 1537–1574 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lannes, A., Anterrieu, E., Maréchal, P.: Clean and Wipe, Astronomy and Astrophysics. Suppl. Series 123, 183–198 (1997)

    Google Scholar 

  25. Lannes, A., Roques, S., Casanove, J.: Stabilized reconstruction in signal and image processing; part I: Partial deconvolution and spectral extrapolation with limited field. Journal of Modern Optics 34(2), 161–226 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liew, S.C., Hasegawa, B.H., Brown, J.K., Lang, T.F.: Noise propagation in SPECT images reconstructed using an iterative maximum likelihood algorithm. Phys. Med. Biol. 38, 1713–1727 (1993)

    Article  Google Scholar 

  27. Liow, J.S., Strother, S.C.: Noise and signal decoupling in maximum likehood reconstructions and Metz filters for PET brain images. Phys. Med. Biol. 39, 735–750 (1994)

    Article  Google Scholar 

  28. Lobel, P., Blanc-Féraud, L., Pichot, C., Barlaud, M.: Conjugate gradient algorithm with edge-preserving regularization for microwave inverse scattering. In: Processing PIERS 1996, Innsbruck, Austria (1996)

    Google Scholar 

  29. Maréchal, P., Lannes, A.: Unification of some deterministic and probabilistic methodologies for the solution of linear inverse problems via the principle of maximum entropy on the mean. Inverse Problems 13, 135–151 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Maréchal, P., Togane, D., Celler, A.: A new reconstruction methodology for Computerized Tomography: FRECT (Fourier Regularized Computed Tomography). IEEE, Transactions on Nuclear Science 47, 1595–1601 (2000)

    Article  Google Scholar 

  31. Maréchal, P., Togane, D., Celler, A., Borwein, J.M.: Computation and stability analysis for regularized tomographic reconstructions. IEEE, Transactions on Nuclear Science 46, 2177–2184 (1999)

    Article  Google Scholar 

  32. Parlett, B.N., Scott, D.S.: The Lanczos algorithm with selective reorthogonalization. Math. Comp. 33, 217–238 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  33. Passeri, A., Formiconi, A.R., Meldolesi, U.: Physical modelling (geometrical system response, Compton scattering and attenuation) in brain SPECT using the conjugate gradient reconstruction method. Phys. Med. Biol. 37, 1727–1744 (1992)

    Google Scholar 

  34. Snyder, D.L., Miller, M.I., Thomas, L.J., Politte, D.G.: Noise and edge artifacts in Maximum-Likelihood Reconstructions for Emission Tomography. IEEE Trans. Med. Imaging 6, 228–238 (1987)

    Article  Google Scholar 

  35. Stewart, G.W.: Afternotes on Numerical Analysis, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1996)

    Google Scholar 

  36. Tapiovaara, M.J., Wagner, R.F.: SNR and Noise measurements for medical imaging: 1-A practical approach based on statistical decision theory. Phys. Med. Biol. 38, 71–93 (1993)

    Article  Google Scholar 

  37. Tsui, B.M.W., Zhao, X., Frey, E., Gullberg, G.T.: Comparison between MLEM and WLS-CG algorithms for SPECT reconstruction. IEEE Trans. Nuclear Sciences 6, 1766–1772 (1991)

    Google Scholar 

  38. Wang, W., Gindi, G.: Noise analysis of MAP-EM algorithms for emission tomography. Phys. Med. Biol. 42, 2215–2232 (1997)

    Article  Google Scholar 

  39. Wilson, D.W., Tsui, B.M.W.: Noise properties of filtered-backprojection and ML-EM reconstructed emission tomographic images. IEEE Trans. Nuclear Sciences 40, 1198–1203 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maréchal, P., Mariano-Goulart, D., Giraud, L., Gratton, S. (2004). Towards Automatic Selection of the Regularization Parameters in Emission Tomgraphy by Fourier Synthesis. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. MMBIA CVAMIA 2004 2004. Lecture Notes in Computer Science, vol 3117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27816-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27816-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22675-8

  • Online ISBN: 978-3-540-27816-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics