Skip to main content

Abstract

In this paper, we present a new algorithmic paradigm for cone-beam image reconstruction. The new class of algorithms, referred to as cone-beam reconstruction by moving frames, enables numerical implementation of exact cone-beam inversion using its intrinsic geometry. In particular, our algorithm allows a 3-D discrete approach to the differentiation-backprojection operator on the curved manifolds appearing in all analytical cone-beam inverse formulations. The enabling technique, called the method of moving frames, has been popular in the computer vision community for many years [3]. Although cone-beam image reconstruction has come from a different origin and has been until now developed along very different lines from computer vision algorithms, we can find analogies in their line-and-plane geometry. We demonstrate how the moving frame technique can be made into a ubiquitous and powerful computational tool for designing and implementing more robust and more accurate cone-beam reconstruction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cartan, É. La Méthode du Repère Mobile, la Théorie des Groupes Continus et les Espaces Généralisés. Exposés de Géométrie 5, Hermann, Paris (1935)

    Google Scholar 

  2. Clack, R., Defrise, M.: Cone-beam Reconstruction by the use of Radon Transform Intermediate Functions. J. of Opt. Soc. Am. A. 11(2), 580–585 (1994)

    Article  MathSciNet  Google Scholar 

  3. Faugeras, O.: Cartan’s Moving Frame Method and its Application to the Geometry and Evolution of Curves in the Euclidean, Affine and Projective Planes. In: Mundy, J.L., Zisserman, A., Forsyth, D.A. (eds.) Applications of Invariance in Computer Vision, Second Joint European - US Workshop, Ponta Delgada, Azores, Portugal, October 9-14, pp. 11–46 (1993)

    Google Scholar 

  4. Feldkamp, L.A., David, L.C., Kress, J.W.: Practical Cone-beam Algorithm. J. Opt. Soc. Am. A. 1(6), 612–619 (1984)

    Article  Google Scholar 

  5. Grangeat, P.: Mathematical Framework of Cone Beam 3-D Reconstruction via the First Derivative of the Radon Transform. Mathematical methods in tomography. Lecture notes in mathematics, 1497, 66–97 (1991)

    Google Scholar 

  6. Helgason, S.: The Radon Transform, 2nd edn. Birkhäuser, Basel (1999)

    MATH  Google Scholar 

  7. Horn, B.K.P.: Density Reconstruction using Arbitrary Ray Sampling Schemes. Proceedings of the IEEE 66(5), 551–562 (1978)

    Article  Google Scholar 

  8. Horn, B.K.P.: Fan-beam Reconstruction Methods. Proceedings of the IEEE 67(12), 1616–1623 (1979)

    Article  Google Scholar 

  9. Katsevich, A.: Theoretically exact FBP-type Inversion Algorithm for Spiral CT. SIAM J. of App. Math. 62, 2012–2026 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Katsevich, A.: A General Scheme for Constructing Inversion Algorithms for Cone Beam CT. Int. J. of Math. and Math. Sci. 21, 1305–1321 (2003)

    Article  MathSciNet  Google Scholar 

  11. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. John Wiley & Sons Inc., Chichester (1963)

    MATH  Google Scholar 

  12. Mundy, J.L., Zisserman, A. (eds.): Geometric Invariance in Computer Vision. MIT Press, Cambridge (1992)

    Google Scholar 

  13. Natterer, F.: The Mathematics of Computerized Tomography. John Wiley & Sons Ltd. and B. G. Teubner, Stuttgart (1986)

    MATH  Google Scholar 

  14. Smith, B.D.: Image Reconstruction from Cone-beam Projections: Necessary and Sufficient Conditions and reconstruction methods. IEEE Trans. Med. Imag. 4, 14–25 (1985)

    Article  Google Scholar 

  15. Tuy, H.K.: An Inversion Formula for Cone-beam Reconstruction. SIAM J. Appl. Math. 43, 546–552 (1983)

    Article  MathSciNet  Google Scholar 

  16. Yang, X.: Geometry of Cone-beam Reconstruction. Ph.D. Thesis, Massachusetts Institute of Technology, Dept. of Mathematics, Cambridge, MA (September 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, X., Horn, B.K.P. (2004). Cone-Beam Image Reconstruction by Moving Frames. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. MMBIA CVAMIA 2004 2004. Lecture Notes in Computer Science, vol 3117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27816-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27816-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22675-8

  • Online ISBN: 978-3-540-27816-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics