Skip to main content

Maximum Agreement and Compatible Supertrees

  • Conference paper
Combinatorial Pattern Matching (CPM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3109))

Included in the following conference series:

Abstract

Given a collection of trees on n leaves with identical leaf set, the Mast, resp. Mct, problem consists in finding a largest subset of leaves such that all input trees restricted to these leaves are isomorphic, resp. have a common refinement. For Mast, resp. Mct, on k rooted trees, we give an O(min{3p kn,2.27p+kn 3}) exact algorithm, where p is the smallest number of leaves to remove from input trees in order for these trees to be isomorphic, resp. to admit a common refinement. This improves on [14] for Mast and proves fixed-parameter tractability for Mct. We also give an approximation algorithm for (the complement of) Mast similar to the one in [2], but with a better ratio and running time, and extend it to Mct.

We generalize Mast and Mct to the case of supertrees where input trees can have non-identical leaf sets. For the resulting problems, Smast and Smct, we give an O(N+n) time algorithm for the special case of two input trees (N is the time bound for solving Mast, resp. Mct, on two O(n)-leaf trees). Last, we show that Smast and Smct parameterized in p are W[2]-hard and cannot be approximated in polynomial time within a constant factor unless P=NP, even when the input trees are rooted triples.

We also extend the above results to the case of unrooted input trees.

Supported by the Action Incitative Informatique-Mathématique-Physique en Biologie Molé culaire [ACI IMP-Bio].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Gramm, J., Niedermeier, R.: Faster exact algorithms for hard problems: a parameterized point of view. Disc. Math. 229, 3–27 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amir, A., Keselman, D.: Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees: metrics and efficient algorithm. SIAM J. on Comp. 26(3), 1656–1669 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10 (1992)

    Article  Google Scholar 

  4. Bellare, M., Goldwasser, S., Lund, C., Russeli, A.: Efficient probabilistically checkable proofs and applications to approximations. In: Proceedings of the Twenty- Fifth Annual A.C.M. Symposium on Theory of Computing, pp. 294–304 (1993)

    Google Scholar 

  5. V. Berry and F. Nicolas. Maximum agreement and compatible supertrees(2004), (available from http://www.lirmm.fr/~vberry ) 04045, LIRMM,

  6. Bininda-Edmonds, O.R.P., Bryant, H.N.: Properties of matrix representation with parsimony analyses. Syst. Biol. 47, 497–508 (1998)

    Google Scholar 

  7. Bininda-Edmonds, O.R.P., Gittleman, J.L., Steel, M.A.: The (super)tree of life: procedures, problems, and prospects. Ann. Rev. Ecol. Syst (2002)

    Google Scholar 

  8. Bininda-Edmonds, O.R.P., Sanderson, M.J.: Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Syst. Biol. 50(4), 565–579 (2001)

    Article  Google Scholar 

  9. Bryant, D.: Building trees, hunting for trees and comparing trees. PhD thesis, University of Canterbury, Department of Math. (1997)

    Google Scholar 

  10. Bryant, D., Steel, M.A.: Extension operations on sets of leaf-labelled trees. Adv. Appl. Math. 16, 425–453 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, D., Diao, L., Eulenstein, O., Fernandez-Baca, D.: Flipping: a supertree construction method. DIMACS Series in Disc. Math. and Theor. Comp. Sci. 61, 135–160 (2003)

    MathSciNet  Google Scholar 

  12. Cole, R., Farach, M., Hartigan, R.: Przytycka T., and M. Thorup. An O(n log n) algorithm for the maximum agreement subtree problem for binary trees. SIAM J.on Computing 30(5), 1385–1404 (2001)

    Article  Google Scholar 

  13. Cole, R., Hariharan, R.: Dynamic lca queries on trees. In: Proc. of the 10th ann. ACM-SIAM symp. on Disc. alg (SODA 1999), pp. 235–244 (1999)

    Google Scholar 

  14. Downey, R.G., Fellows, M.R., Stege, U.: Computational tractability: The view from mars. Bull. of the Europ. Assoc. for Theoret. Comp. Sci. 69, 73–97 (1999)

    MATH  MathSciNet  Google Scholar 

  15. Farach, M., Przytycka, T., Thorup, M.: Agreement of many bounded degree evolutionary trees. Inf. Proc. Letters 55(6), 297–301 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ganapathysaravanabavan, G., Warnow, T.: Finding a maximum compatible tree for a bounded number of trees with bounded degree is solvable in polynomial time. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 156–163. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Gasieniec, L., Jansson, J., Lingas, A., Ostlin, A.: On the complexity of constructing evolutionary trees. J. of Combin. Optim. 3, 183–197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gordon, A.G.: Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labelled leaves. J. of Classif. 3, 335–346 (1986)

    Article  MATH  Google Scholar 

  19. Gupta, A., Nishimura, N.: Gupta and N. Algorithmica 21(2), 183–210 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hamel, A.M., Steel, M.A.: Finding a maximum compatible tree is NP-hard for sequences and trees. Appl. Math. Lett. 9(2), 55–59 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestor. Computer and System Science 13, 338–355 (1984)

    MATH  MathSciNet  Google Scholar 

  23. Hein, J., Jiang, T., Wang, L.: Zhang K. On the complexity of comparing evolutionary trees. Disc. Appl. Math. 71, 153–169 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement supertrees. In: Proceedings of the Sixth Latin American Symposium on Theoretical Informatics, LATIN (2004) (in press)

    Google Scholar 

  25. Kao, M.Y., Lam, T.W., Sung, W.K., Ting, H.F.: A decomposition theorem for maximum weight bipartite matchings with applications to evolutionary trees. In: Proc. of the 8th Ann. Europ. Symp. Alg (ESA), pp. 438–449. Springer, New York (1999)

    Google Scholar 

  26. Kao, M.Y., Lam, T.W., Sung, W.K., Ting, H.F.: An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings. J. of Algo. 40, 212–233 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Niedermeier, R., Rossmanith, P.: An efficient fixed parameter algorithm for 3-Hitting Set. Journal of Discrete Algorithms 1, 89–102 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Page, R.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 538–551. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Purvis, A.: A modification to Baum and Ragan’s method for combining phylogenetic trees. Syst. Biol. 44, 251–255 (1995)

    Google Scholar 

  30. Ragan, M.A.: Matrix representation in reconstructing phylogenetic relationships among the eukaryots. Biosystems 28, 47–55 (1992)

    Article  Google Scholar 

  31. Ronquist, F.: Matrix representation of trees, redundancy, and weighting. Syst. Biol. 45, 247–253 (1996)

    Article  Google Scholar 

  32. Semple, C., Steel, M.A.: A supertree method for rooted trees. Disc. Appl. Math. 105, 147–158 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Steel, M.A., Warnow, T.: Kaikoura tree theorems: Computing the maximum agreement subtree. Information Processing Letters 48, 77–82 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Thorley, J.L., Wilkinson, M.: A view of supertrees methods. In: Bioconsensus, DIMACS Amer. Math. Soc. Pub.,, vol. 61, pp. 185–194 (2003)

    Google Scholar 

  35. Warnow, T.J.: Tree compatibility and inferring evolutionary history. Journal of Algorithms 16, 388–407 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wilkinson, M., Thorley, J., Littlewood, D.T.J., Bray, R.A.: Interrelationships of the Platyhelminthes. In: Towards a phylogenetic supertree of Platyhelminthes, Taylor and Francis, London, vol. ch.27 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berry, V., Nicolas, F. (2004). Maximum Agreement and Compatible Supertrees. In: Sahinalp, S.C., Muthukrishnan, S., Dogrusoz, U. (eds) Combinatorial Pattern Matching. CPM 2004. Lecture Notes in Computer Science, vol 3109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27801-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27801-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22341-2

  • Online ISBN: 978-3-540-27801-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics