Skip to main content

Information Theoretically Secure Oblivious Polynomial Evaluation: Model, Bounds, and Constructions

  • Conference paper
Information Security and Privacy (ACISP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3108))

Included in the following conference series:

Abstract

We introduce an information theoretical model for oblivious polynomial evaluation relying on predistributed data, and prove very general lower bounds on the size of the predistributed data, as well as the size of the communications in any (one-round) protocol. We then show that these bounds are tight by exhibiting a scheme for oblivious polynomial evaluation achieveing all the lower bounds simultaneously. We also present a natural generalisation to oblivious linear function evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaver, D.: Commodity-Based Cryptography (Extended Abstract). In: STOC 1997, pp. 446–455 (1997)

    Google Scholar 

  2. Blundo, C., Masucci, B., Stinson, D.R., Wei, R.: Constructions and Bounds for Unconditionally Secure Non-Interactive Commitment Schemes. Designs, Codes, and Cryptography, Special Issue in Honour of Ron Mullin 26(1-3), 97–110 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally Secure Digital Signature Schemes Admitting Transferability. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 130–142. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Matsumoto, T., Imai, H.: On the Key Predistribution Systems: A Practical Solution to the Key Distribution Problem. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 185–193. Springer, Heidelberg (1988)

    Google Scholar 

  5. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st STOC, pp. 245–254 (1999)

    Google Scholar 

  6. Rivest, R.L.: Unconditionally Secure Commitment and Oblivious Transfer Schemes Using Concealing Channels and a Trusted Initializer, Preprint available from http://theory.lcs.mit.edu/~rivest/Rivest-commitment.pdf

  7. Chang, Y.-C., Lu, C.-J.: Oblivious Polynomial Evaluation and Oblivious Neural Learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hanaoka, G., Imai, H., Mueller-Quade, J., Nascimento, A.C.A., Otsuka, A., Winter, A. (2004). Information Theoretically Secure Oblivious Polynomial Evaluation: Model, Bounds, and Constructions. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds) Information Security and Privacy. ACISP 2004. Lecture Notes in Computer Science, vol 3108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27800-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27800-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22379-5

  • Online ISBN: 978-3-540-27800-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics