Skip to main content

Digital Signature Schemes with Domain Parameters

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3108))

Abstract

Digital signature schemes often use domain parameters such as prime numbers or elliptic curves. They can be subject to security threats when they are not treated like public keys. In this paper we formalize the notion of “signature scheme with domain parameter” together with a new adversarial model: the “domain parameter shifting attack”.

We take ECDSA as a case study. We make a domain parameter shifting attack against ECDSA: an attacker can impersonate a honest signer either by trying to modify the subgroup generator G or, when using point compression representation, by trying to modify the elliptic curve a and b domain parameters. We further propose to fix this ECDSA issue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SEC 2: Recommended Elliptic Curve Cryptography Domain Parameters. v1.0, Certicom Research (2000)

    Google Scholar 

  2. ANSI X9.30. Public Key Cryptography for the Financial Services Industry: Part 1: The Digital Signature Algorithm (DSA). American National Standard Institute. American Bankers Association (1997)

    Google Scholar 

  3. ANSI X9.62. Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). American National Standard Institute. American Bankers Association (1998)

    Google Scholar 

  4. ISO/IEC 14888. Information Technology — Security Techniques — Digital Signatures with Appendix. ISO/IEC, Geneva, Switzerland (1998)

    Google Scholar 

  5. Secure Hash Standard. Federal Information Processing Standard publication #180- 1. U.S. Department of Commerce, National Institute of Standards and Technology (1995)

    Google Scholar 

  6. Digital Signature Standard (DSS). Federal Information Processing Standards publication #186-2. U.S. Department of Commerce, National Institute of Standards and Technology (2000)

    Google Scholar 

  7. Bleichenbacher, D.: Generating ElGamal Signatures without Knowing the Secret Key. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 10–18. Springer, Heidelberg (1996)

    Google Scholar 

  8. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on Information Theory IT-22, 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  9. ElGamal, T.: Cryptography and Logarithms over Finite Fields. PhD Thesis, Stanford University (1984)

    Google Scholar 

  10. ElGamal, T.: A Public-key Cryptosystem and a Signature Scheme based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  11. ElGamal, T.: A Public-key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Transactions on Information Theory IT-31, 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  12. Goldwasser, S., Micali, S., Rivest, R.L.: A “Paradoxical” Solution to the Signature Problem. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, p. 467. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  13. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure against Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17, 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastructure Certificate and CRL Profile. Internet Standard. RFC 2459 (1999)

    Google Scholar 

  15. Koblitz, N.: CM-Curves with good Cryptographic Properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. N. Koblitz, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

    Google Scholar 

  16. Menezes, A., Smart, N.: Security of Signature Schemes in a Multi-User Setting. To appear in Designs, Codes and Cryptography

    Google Scholar 

  17. Merkle, R.C.: Secure Communications over Insecure Channels. Communications of the ACM 21, 294–299 (1978)

    Article  Google Scholar 

  18. Monnerat, J.: Computation of the Discrete Logarithm on Elliptic Curves of Trace One — Tutorial. Technical report EPFL/IC/2002/49, EPFL (2002)

    Google Scholar 

  19. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures and Public-key Cryptosystem. Communications of the ACM 21, 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schnorr, C.P.: Efficient Identification and Signature for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 235–251. Springer, Heidelberg (1990)

    Google Scholar 

  21. Schnorr, C.P.: Efficient Identification and Signature for Smart Cards. Journal of Cryptology 4, 161–174 (1991)

    Article  MATH  Google Scholar 

  22. Smart, N.P.: The Discrete Logarithm Problem on Elliptic Curves of Trace One. Journal of Cryptology 12, 193–196 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vaudenay, S.: Hidden Collisions on DSS. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 83–88. Springer, Heidelberg (1996)

    Google Scholar 

  24. Vaudenay, S.: The Security of DSA and ECDSA — Bypassing the Standard Elliptic Curve Certification Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 309–323. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vaudenay, S. (2004). Digital Signature Schemes with Domain Parameters. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds) Information Security and Privacy. ACISP 2004. Lecture Notes in Computer Science, vol 3108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27800-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27800-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22379-5

  • Online ISBN: 978-3-540-27800-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics