Advertisement

Variability and Component Composition

  • Tijs van der Storm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3107)

Abstract

In component-based product populations, variability has to be described at the component level to be able to benefit from a product family approach. As a consequence, composition of components becomes very complex. We describe how this complexity can be managed automatically. The concepts and techniques presented are the first step toward automated management of variability for web-based software delivery.

Keywords

Feature Description Product Family Component Composition Composite Feature Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)CrossRefGoogle Scholar
  2. 2.
    de Jonge, M.: Package-based software development. In: Proc. 29th Euromicro Conf., pp. 76–85. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  3. 3.
    Dolstra, E., Florijn, G., Visser, E.: Timeline variability: The variability of binding time of variation points. In: van Gurp, J., Bosch, J. (eds.) Workshop on Software Variability Modeling (SVM 2003) (February 2003)Google Scholar
  4. 4.
    Kang, K., et al.: Feature-oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, SEI, CMU, Pittsburgh, PA (November 1990)Google Scholar
  5. 5.
    Klint, P.: A meta-environment for generating programming environments. ACM Transactions on Software Engineering and Methodology 2(2), 176–201 (1993)CrossRefGoogle Scholar
  6. 6.
    Meyer, B.: The software knowledge base. In: Proc. of the 8th Intl. Conf. on Software Engineering, pp. 158–165. IEEE Computer Society Press, Los Alamitos (1985)Google Scholar
  7. 7.
    Prieto-Diaz, R., Neighbors, J.M.: Module interconnection languages. The Journal of Systems and Software 6(4), 307–334 (1986)CrossRefGoogle Scholar
  8. 8.
    Sørensen, M.H., Secher, J.P.: From type inference to configuration. In: The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, Springer Verlag, Heidelberg (2002)Google Scholar
  9. 9.
    Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object- Oriented Programming, 2nd edn. ACM Press and Addison-Wesley, New York (2002)Google Scholar
  10. 10.
    van den Brand, M., Moreau, P., Vinju, J.J.: Environments for Term Rewriting Engines for Free. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 424–435. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    van Deursen, M., de Jonge, T.: Feature-based product line instantiation using source-level packages. In: Proceedings Second Software Product Line Conf. (SPLC2). LNCS, pp. 217–234. Springer- Verlag, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    van Deursen, Klint, P.: Domain-specific language design requires feature descriptions. Journal of Computing and Information Technology 10(1), 1–18 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    van Gurp, J., Bosch, J., Svahnberg, M.: On the Notion of Variability in Software Product Lines. In: Proceedings of the Working IEEE/IFIP Conf. on Software Architecture, (WICSA 2001) (2001)Google Scholar
  14. 14.
    van Ommering, R., Bosch, J.: Widening the scope of software product lines: from variation to composition. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, p. 328. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tijs van der Storm
    • 1
  1. 1.CWIAmsterdamThe Netherlands

Personalised recommendations