Skip to main content

Modeling and Analysis of Margolus Quantum Cellular Automata Using Net-Theoretical Methods

  • Conference paper
Applications and Theory of Petri Nets 2004 (ICATPN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3099))

Included in the following conference series:

Abstract

Petri net methods have been very successful in modeling the operation of classical parallel systems. In this work, these methods are applied to designing semi-classical parallel quantum computers. The demonstration object of our study is a quantum Billiard Ball Model Cellular Automaton (bbmca) suggested by Margolus. Firstly, a high-level Petri net model of a classical reversible version of this automaton is constructed. Subsequently, this Petri net model is used as a so-called kernel net of the quantum bbmca. The time-independent Hamiltonian needed to generate the time-evolution of a quantum computer can be automatically generated from the reachability graph of a kernel net. Also, a new numerical method for solving the resulting Schröddinger differential equation system needed for time simulation of the quantum automaton is given. QuantumMaria, a software package for modeling and numerical simulation of quantum computers, is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benioff, P.: The Computer as a Physical System: A Microscopic Quantum Mechanical Hamiltonian Model of Computers as Represented by Turing Machines. Journal of Statistical Physics 22(5), 563–591 (1980)

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D.: Quantum Theory, the Church–Turing Principle and the Universal Quantum Computer. Proceedings of Royal Society London A 400, 97–117 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Feynman, R.P.: Simulating Physics with Computers. International Journal of Theoretical Physics 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  4. Feynman, R.P.: Quantum Mechanical Computers. Foundations of Physics 16(6), 507–531 (1986)

    Article  MathSciNet  Google Scholar 

  5. Fox, B.L., Glynn, P.W.: Computing Poisson Probabilities. Communications of the ACM 31(4), 440–445 (1988)

    Article  MathSciNet  Google Scholar 

  6. Fredkin, E., Toffoli, T.: Conservative Logic. International Journal of Theoretical Physics 21(3), 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gross, D., Miller, D.R.: The Randomization Technique as a Modeling Tool and Solution Procedure for Transient Markov Processes. Operations Research 32(2), 345–361 (1984)

    Article  MathSciNet  Google Scholar 

  8. Gruska, J.: Quantum Computing. McGraw-Hill, UK (1999)

    Google Scholar 

  9. Junttila, T.: On the Symmetry Reduction Method for Petri Nets and Similar Formalisms. Research Report HUT–TCS–A80, Helsinki University of Technology, Department of Computer Science and Engineering, Laboratory for Theoretical Computer Science, Espoo, Finland, Dissertation for the degree of Doctor of Science in Technology (September 2003)

    Google Scholar 

  10. Mäkelä, M.: A Reachability Analyser for Algebraic System Nets. Research Report HUT–TCS–A69, Helsinki University of Technology, Department of Computer Science and Engineering, Laboratory for Theoretical Computer Science, Espoo, Finland (June 2001)

    Google Scholar 

  11. Mäkelä, M.: Maria: Modular Reachability Analyser for Algebraic System Nets. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 434–444. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Margolus, N.: Physics-Like Models of Computation. Physica D 10, 81–95 (1984)

    Article  MathSciNet  Google Scholar 

  13. Margolus, N.: Quantum Computation. Annals of the New York Academy of Sciences 480, 487–497 (1986)

    Article  Google Scholar 

  14. Margolus, N.: Parallel Quantum Computation. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information. SFI Studies in the Sciences of Complexity, vol. VIII, pp. 273–287. Addison–Wesley, Reading (1990)

    Google Scholar 

  15. Maria homepage, http://www.tcs.hut.fi/maria/

  16. Ojala, L., Penttinen, O.-M.: Simulating Quantum Interference in Feynman’s \(\checkmark\)not-computer with Stochastic Petri Nets. In: Proceedings of the European Simulation and Modelling Conference (ESMc 2003), Naples, Italy, October 2003, pp. 494–502 (2003)

    Google Scholar 

  17. Ojala, L., Penttinen, O.-M., Rantanen, H.: A Novel Application of Stochastic Petri Nets: Simulation of Serial Quantum Computers – Feynman’s Swap Computer. In: Kemper, P. (ed.) On-site Proceedings of ICALP03 Satellite Workshop on Stochastic Petri Nets and Related Formalisms, June 2003. Forschungsberichte des Fachbereichs Informatik der Universität Dortmund, vol. 780, pp. 103–122. Eindhoven, The Netherlands (2003)

    Google Scholar 

  18. Parviainen, E.: Reducing Size of Quantum Gate Matrices Using Pr/T Nets. In: Proceedings of the 2002 IEEE International Conference on Systems, Man and Cybernetics, Hammamet, Tunisia, October 2002, vol. 2, pp. 634–639. IEEE (Institute of Electrical and Electronics Engineers, Inc.), Los Alamitos (2002)

    Google Scholar 

  19. Peres, A.: Measurement of Time by Quantum Clocks. American Journal of Physics 48(7), 552–557 (1980)

    Article  MathSciNet  Google Scholar 

  20. Peres, A.: Zeno Paradox in Quantum Theory. American Journal of Physics 48(11), 931–932 (1980)

    Article  MathSciNet  Google Scholar 

  21. Peres, A.: Reversible Logic and Quantum Computers. Physical Review A 32(6), 3266–3276 (1985)

    Article  MathSciNet  Google Scholar 

  22. Reisig, W.: Petri Nets and Algebraic Specifications. Theoretical Computer Science 80(1-34), 1–34 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)

    Google Scholar 

  24. von Neumann, J.: Theory of Self-reproducing Automata. University of Illinois Press, Urbana (1966); Completed and edited by Burks A. W.

    Google Scholar 

  25. Wolfram, S.: Theory and Applications of Cellular Automata: Including Selected Papers 1983–1986. World Scientific Publishing Co., Inc., River Edge (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ojala, L., Penttinen, OM., Parviainen, E. (2004). Modeling and Analysis of Margolus Quantum Cellular Automata Using Net-Theoretical Methods. In: Cortadella, J., Reisig, W. (eds) Applications and Theory of Petri Nets 2004. ICATPN 2004. Lecture Notes in Computer Science, vol 3099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27793-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27793-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22236-1

  • Online ISBN: 978-3-540-27793-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics