Advertisement

A Low-Power Multithreaded Processor for Baseband Communication Systems

  • Michael Schulte
  • John Glossner
  • Suman Mamidi
  • Mayan Moudgill
  • Stamatis Vassiliadis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3133)

Abstract

Embedded digital signal processors for baseband communication systems have stringent design constraints including high computational bandwidth, low power consumption, and low interrupt latency. Furthermore, these processors should be compiler-friendly, so that code for them can quickly be developed in a high-level language. This paper presents the design of a high-performance, low-power digital signal processor for baseband communication systems. The processor uses token triggered threading, SIMD vector processing, and powerful compound instructions to provide real-time baseband processing capabilities with very low power consumption. Using a super-computer class vectorizing compiler, the processor achieves real-time performance on a 2Mbps WCDMA transmission system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous Multithreading: Maximizing onchip Parallelism. In:22nd Annual International Symposium on Computer Architecture, pp.392-403 (June 1995)Google Scholar
  2. 2.
    Glossner, J., Iancu, D., Lu, J., Hokenek, E., Moudgill, M.: A Software Defined Communications Baseband Design. IEEE Communications Magazine 41(1), 120–128 (2003)CrossRefGoogle Scholar
  3. 3.
    Glossner, J., Raja, T., Hokenek, E., Moudgill, M.: A Multithreaded Processor Architecture for SDR. The Proceedings of the Korean Institute of Communication Sciences 19(11), 70–84 (2002)Google Scholar
  4. 4.
    Glossner, J., Schulte, M., Vassiliadis, S.: A Java-Enabled DSP. In: Deprettere, F., Teich, J., Vassiliadis, S. (eds.) SAMOS 2001. LNCS, vol. 2268, pp. 307–325. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Seshan, N.: High VelociTI Processing: Texas Instruments VLIW DSP Architecture. IEEE Signal Processing Magazine 15(2), 86–101 (1998)CrossRefGoogle Scholar
  6. 6.
    Smith, B.J.: The Architecture of HEP. In: Kowalik, J.S. (ed.) Parallel MIMD Computation: HEP Supercomputer and Its Applications, pp. 41–55. MIT Press, Cambridge (1985)Google Scholar
  7. 7.
    Ungerer, T., Robič, B., Šilc, J.: A Survey of Processors with Explicit Multithreading. ACM Computing Surveys 35(1), 29–63 (2003)CrossRefGoogle Scholar
  8. 8.
    Seng, J.S., Tullsen, D.M., Cai, G.Z.N.: Power-Sensitive Multithreaded Architecture.In: International Conference on Computer Design, pp.199-208 (September 2000)Google Scholar
  9. 9.
    Sebot, J., Drach, N.: SIMD Extensions: Reducing Power Consumption on a Superscalar Processor for Multimedia Applications. Cool Chips IV (April 2001)Google Scholar
  10. 10.
    Lee, R.B.: Subword Permutation Instructions for Two-Dimensional Multimedia Processing in MicroSIMD Architectures.In: Proceedings of the IEEE 11th International Conference on Application-Specific Systems, Architectures and Processor, pp.3-14 (July 2000)Google Scholar
  11. 11.
    Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press, New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael Schulte
    • 2
  • John Glossner
    • 1
    • 3
  • Suman Mamidi
    • 2
  • Mayan Moudgill
    • 1
  • Stamatis Vassiliadis
    • 3
  1. 1.Sandbridge TechnologiesWhite PlainsUSA
  2. 2.Dept. of ECEUniversity of WisconsinMadisonUSA
  3. 3.Electrical Engineering, Mathematics and Computer Science DepartmentDelft University of TechnologyDelftThe Netherlands

Personalised recommendations