Advertisement

Comparing Transitive Closure with a New T-transitivization Method

  • Luis Garmendia
  • Adela Salvador
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3131)

Abstract

It has been developed a C++ program that generates random fuzzy relations of a given dimension and computes their T-transitive closure (that contains the initial relation) and the new T-transitivized relation (that is contained in the initial relation) for the t-norms minimum, product and Lukasiewicz. It has been computed several distances between both transitive closure and transitivized relation with the initial relation one hundred times for each dimension and for each t-norm, and the results show that the average distance of the random fuzzy relations with the transitive closure is higher than the average distance with the new transitivized relation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garmendia, L., Campo, C., Cubillo, S., Salvador, A.: A Method to Make Some Fuzzy Relations T-Transitive. International Journal of Intelligence Systems 14(9), 873–882 (1999)zbMATHCrossRefGoogle Scholar
  2. 2.
    Garmendia, L., Salvador, A.: On a new method to T-transitivize fuzzy relations. In: Information Processing and Management of Uncertainty in Knowledge - based Systems, IPMU 2000, pp. 864–869 (2000)Google Scholar
  3. 3.
    Garmendia, L., Salvador, A.: On a new method to T-transitivize fuzzy relations. In: Bouchon- Meunier, B., Gutierrez-Rios, J., Magdalena, L., Yager, R.R. (eds.) Technologies for Constructing Intelligent Systems 2, pp. 251–260. Springer, Heidelberg (2000)Google Scholar
  4. 4.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall, New Jersey (1995)zbMATHGoogle Scholar
  5. 5.
    Hashimoto, H.: Transitivity of generalized fuzzy matrices. Fuzzy Sets and Systems 17(1), 83–90 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Montero, F., Tejada, J.: On fuzzy transitivity. Instituto Nacional de Estadística 111, 49–58 (1986)Google Scholar
  7. 7.
    Naessens, H., De Meyer, H., De Baets, B.: Algorithms for the Computation of TTransitive Closures. IEEE Trans Fuzzy Systems 10(4), 541–551 (2002)CrossRefGoogle Scholar
  8. 8.
    Ovchinnikov, S.: Representations of Transitive Fuzzy Relations. In: Skala, H.J., Termini y, S., Trillas, E. (eds.) Aspects of Vagueness, pp. 105–118. Reidel Pubs., Boston (1984)Google Scholar
  9. 9.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York (1983)Google Scholar
  10. 10.
    Trillas, E., Alsina, C., Terricabras, J.M.: Introducción a la lógica borrosa . Ariel Matemática (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Luis Garmendia
    • 1
  • Adela Salvador
    • 2
  1. 1.Facultad de Informática, Dpto. de Lenguajes y Sistemas InformáticosUniversidad Complutense of MadridMadridSpain
  2. 2.E.T.S.I. Caminos Canales y Puertos, Dpto. de Matemática AplicadaTechnical University of MadridMadridSpain

Personalised recommendations