Advertisement

A Framework for Representation and Manipulation of Vague Knowledge

  • Van Nam Huynh
  • Yoshiteru Nakamori
Conference paper
  • 639 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3131)

Abstract

This paper introduces the notion of a fuzzy context model as a formal framework for representation and manipulation of vague knowledge. The motivation for the fuzzy context model arises from the consideration of several practical situations in data analysis, interpretation of vague concepts, and modeling expert knowledge for decision-making support. It is shown that the fuzzy context model can provide a constructive approach to fuzzy sets of type 2 emerged from a view-point of modeling vaguely conceptual knowledge as well as to a uncertainty measure of type 2, which is induced from vague knowledge expressed linguistically.

Keywords

Fuzzy context model uncertainty measure of type 2 decision-making context-dependent fuzzy set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematics and Statistics 38, 325–339 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Denoeux, T.: Modeling vague beliefs using fuzzy-valued belief structure. Fuzzy Sets and Systems 116, 167–199 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Possibility Theory – An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1987)Google Scholar
  4. 4.
    Dubois, D., Prade, H.: The use of fuzzy numbers in decision analysis. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 309–321. North-Holland, New York (1982)Google Scholar
  5. 5.
    Düntsch, I., Gediga, G.: Uncertainty measures of rough set prediction. Artificial Intelligence 106, 109–137 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Freeling, A.N.S.: Fuzzy sets and decision analysis. IEEE Transactions on Systems, Man and Cybernetics 10(7), 341–354 (1980)CrossRefGoogle Scholar
  7. 7.
    Gebhardt, J., Kruse, R.: The context model: An integrating view of vagueness and uncertainty. International Journal of Approximate Reasoning 9, 283–314 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gebhardt, J., Kruse, R.: Parallel combination of information sources. In: Gabbay, D.M., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 3, pp. 393–439. Kluwer, Dordrecht (1998)Google Scholar
  9. 9.
    Gebhardt, J.: Learning from data – Possibilistic graphical models. In: Gabbay, D.M., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 4, pp. 314–389. Kluwer, Dordrecht (2000)Google Scholar
  10. 10.
    Hathaway, R.J., Bezdek, J.C., Pedrycz, W.: A parametric model for fusing heterogeneous fuzzy data. IEEE Transactions on Fuzzy Systems 4(3), 270–281 (1996)CrossRefGoogle Scholar
  11. 11.
    Huynh, V.N., Nakamori, Y., Ho, T.B., Resconi, G.: A context model for constructing membership functions of fuzzy concepts based on modal logic. In: Eiter, T., Schewe, K.-D. (eds.) FoIKS 2002. LNCS, vol. 2284, pp. 93–104. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Huynh, V.N., Ryoke, M., Nakamori, Y., Ho, T.B.: Fuzziness and uncertainty within the framework of context model. In: Bilgic, T., et al. (eds.) IFSA 2003. LNCS, vol. 2715, pp. 219–228. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Huynh, V.N., Nakamori, Y., Murai, T., Ho, T.B.: A new approach to belief modeling. In: Seipel, D., Turull Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 196–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Huynh, V.N., Nakamori, Y., Ho, T.B., Resconi, G.: A context model for fuzzy concept analysis based upon modal logic. Information Sciences 160, 111–129 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    John, R.I.: Type 2 fuzzy sets: an appraisal of theory and applications. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6, 563–576 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Karnik, N.N., Mendel, J.M., Liang, Q.: Type 2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems 7, 643–658 (1999)CrossRefGoogle Scholar
  17. 17.
    Karnik, N.N., Mendel, J.M.: Operations on type 2 fuzzy sets. Fuzzy Sets and Systems 122, 327–348 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Klir, R., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  19. 19.
    Kruse, R., Gebhardt, J., Klawonn, F.: Numerical and logical approaches to fuzzy set theory by the context model. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic: State of the Art, pp. 365–376. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  20. 20.
    Lee, S., Lee, K.H., Lee, D.: Ranking the sequences of fuzzy values. Information Sciences 160, 41–42 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Information and Control 31, 312–340 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data . Kluwer Academic Publishers, Boston (1991)Google Scholar
  23. 23.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  24. 24.
    Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Watson, S.R., Weiss, J.J., Donnell, M.L.: Fuzzy decision analysis. IEEE Transactions on Systems, Man and Cybernetics 9(1), 1–9 (1979)CrossRefGoogle Scholar
  26. 26.
    Thiele, H.: On the concept of qualitative fuzzy set. In: Proceedings of The 29th International Symposium on Multi-Valued Logic, Freiburg, Germany, May 1999, pp. 282–287 (1999)Google Scholar
  27. 27.
    Thiele, H.: A new approach to type–2 fuzzy sets. In: Abe, J.M., da Silva Filho, J.I. (eds.) Logic, Artificial Intelligence and Robotics, pp. 255–262. IOS Press, Dordrecht (2001)Google Scholar
  28. 28.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Zadeh, L.A.: The concept of linguistic variable and its application to approximate reasoning. Information Sciences, I 8, 199–249 (1975) ; II   8 , 310–357(1975)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Van Nam Huynh
    • 1
  • Yoshiteru Nakamori
    • 1
  1. 1.School of Knowledge ScienceJapan Advanced Institute of Science and TechnologyTatsunokuchiJapan

Personalised recommendations