Advertisement

Object Positioning Based on Partial Preferences

  • Josep M. Mateo-Sanz
  • Josep Domingo-Ferrer
  • Vicenç Torra
Conference paper
  • 634 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3131)

Abstract

In several situations, a set of objects must be positioned based on the preferences of a set of individuals. Sometimes, each individual can/does only include a limited subset of objects in his preferences (partial preferences). We present an approach whereby a matrix of distances between objects can be derived based on the partial preferences expressed by individuals on those objects. In this way, the similarities and differences between the various objects can subsequently be analyzed. A graphical representation of objects can also be obtained from the distance matrix using classical multivariate techniques such as hierarchical classification and multidimensional scaling.

Keywords

Preference structures Object representation Multivariate analysis Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borg, I., Groenen, P.W.: Modern Multidimensional Scaling: Theory and Applications. Springer, Berlin (1997)zbMATHGoogle Scholar
  2. 2.
    Busing, F., Commandeur, J., Heiser, W.J.: PROXSCAL: A multidimensional scaling program for individual differences scaling with constraints. In: Bandilla, W., Faulbaum, F. (eds.) Softstat 1997: Advances in Statistical Software, vol. 6, pp. 67–74. Lucius & Lucius, Stuttgart (1997)Google Scholar
  3. 3.
    Commandeur, J., Heiser, W.J.: Mathematical derivation in the proximity scaling (PROXSCAL) of symmetric data matrices. Research Report RR-93-04, Department of Data Theory, Leiden University (1993)Google Scholar
  4. 4.
    De Baets, B., Fodor, J.: Twenty years of fuzzy preference structures (1978- 1997). J. Oper. Res. Stat. Computat. Sci. 37, 61–82 (1997)zbMATHGoogle Scholar
  5. 5.
    Everitt, B.S.: Cluster Analysis. Edward Arnold, London (1993)Google Scholar
  6. 6.
    Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)zbMATHGoogle Scholar
  7. 7.
    Jacas, J., Recasens, J.: Aggregation of T-transitive Relations. Int. J. of Intel. Systems 18, 1193–1214 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Legendre, P., Legendre, L.: Numerical Ecology, 2nd English edn. Elsevier, Amsterdam (1998)Google Scholar
  9. 9.
    Pasi, G.: Modeling User’s Preferences in Systems for Information Access. Int. J. of Intel. Systems 18, 793–808 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Spearman, C.: Footrule for measuring correlation. British Journal of Psychology 2, 89–108 (1906)Google Scholar
  11. 11.
    Van de Walle, B.: A Relational Analysis of Decision Makers’ Preferences. Int. J. of Intel. Systems 18, 175–791 (2003)Google Scholar
  12. 12.
    Van de Walle, B., De Baets, B., Kerre, E.E.: Characterizable fuzzy preference structures. Ann. Oper. Res. 80, 105–136 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wu, Z., Meng, W., Yu, C., Liz, Z.: Towards a higly scalable and effective metasearch engine. In: Proc. 10th Int. Web Conf., Hong-Kong, pp. 386–395 (2001)Google Scholar
  14. 14.
    Yager, R.R., Rybalov, A.: On the fusion of documents from multiple collection information retrieval systems. J. Am. Soc. Inform. Sci. 49, 1177–1184 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Josep M. Mateo-Sanz
    • 1
  • Josep Domingo-Ferrer
    • 2
  • Vicenç Torra
    • 3
  1. 1.Statistics GroupUniversitat Rovira i VirgiliTarragona
  2. 2.Universitat Rovira i VirgiliDept. of Computer Engineering and MathematicsTarragona
  3. 3.Institut d’Investigació en Intel·ligència ArtificialBellaterra

Personalised recommendations