Advertisement

Preservation of Distinguished Fuzzy Measure Classes by Distortion

  • Lubica Valásková
  • Peter Struk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3131)

Abstract

Distortion of fuzzy measures is discussed. A special attention is paid to the preservation of submodularity and supermodularity, belief and plausibility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, R.J., Shapley, L.S.: Values of Non-Atomic Games. Princeton University Press, Princeton (1974)Google Scholar
  2. 2.
    Calvo, T., Kolesárová, A., Komorn´ıková, M., Mesiar, R.: Aggregation Operators: Properties, Classes and Construction Methods. In: [3], 3–104Google Scholar
  3. 3.
    Calvo, T., Mayer, G., Mesiar, R.: Aggregation Operators. Physica-Verlag, Heidelberg (2002)Google Scholar
  4. 4.
    Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Social Sci. 17, 263–283 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    De Fineti, B.: La prévision, ses lois logiques et ses sources subjectives. Ann. Inst. H. Poincaré 7, 1–68 (1937)Google Scholar
  6. 6.
    Dempster, A.P.: Upper and lover probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Denneberg, D.: Non-additive Measure and Integral. Kluwer Acad. Publ., Dordrecht (1994)Google Scholar
  8. 8.
    Dzjadyk, V.K.: Vvedenie v teoriju ravnomernogo približenia funkcij polinomami. Nauka, Moskva (1977)Google Scholar
  9. 9.
    Kramosil, I.: Probabilistic Analysis of Belief Functions. IFSR Int. Series on Systems Science and Engineering, vol. 16. Kluwer Academic Publishers, New York (2001)Google Scholar
  10. 10.
    Medolaghi, P.: La logica matematica e il calcolo delle probabilita. Bollettino dell’Associazione Italiana per l’Incremento delle Scienze Attuariali 18, 20–39 (1907)Google Scholar
  11. 11.
    Mesiar, R.: k-order additivity and maxitivity. Atti Sem. Math. Phys. Univ. Modena 51, 179–189 (2003)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Pap, E.: Null-additive set functions. Ister Science Bratislava & Kluwer Academic Publishers, Dordrecht-Boston-London (1995)Google Scholar
  13. 13.
    Pap, E. (ed.): Handbook on Measure Theory. Elsevier, Amsterdam (2002)Google Scholar
  14. 14.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)Google Scholar
  15. 15.
    Stupvnanová, A., Struk, P.: Pessimistic and optimistic fuzzy measures on finite sets. In: MaGiA 2003, Bratislava, Slovakia, pp. 94–100 (2003)Google Scholar
  16. 16.
    Sugeno, M.: Theory of Fuzzy Integrals and Applications. Ph.D. Thesis, Tokyo Inst. of Technology, Tokyo (1974)Google Scholar
  17. 17.
    Wang, Z., Klir, G.: Fuzzy measure theory. Plenum Press, New York (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lubica Valásková
    • 1
  • Peter Struk
    • 1
  1. 1.Department of Mathematics and Descriptive Geometry, Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations