Unsupervised Aggregation by the Choquet Integral Based on Entropy Functionals: Application to the Evaluation of Students

  • Ivan Kojadinovic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3131)


In the framework of aggregation by the discrete Choquet integral, an unsupervised method for the identification of the underlying capacity was recently proposed by the author in [1]. In this paper, an example of the application of the proposed methodology is given : in the absence of initial preferences, the approach is applied to the evaluation of students.


Global Evaluation Initial Preference Partial Evaluation Entropy Measure Aggregation Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kojadinovic, I.: Estimation of the weights of interacting criteria from the set of profiles by means of information-theoretic functionals. European Journal of Operational Research 155, 741–751 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Marichal, J.L.: Aggregation operators for multicriteria decison aid. PhD thesis, University of Liege, Liege, Belgium (1998)Google Scholar
  3. 3.
    Dubois, D., Prade, H.: On the use of aggregation operations in information fusion processes. Fuzzy Sets and Systems (2003) (in press)Google Scholar
  4. 4.
    Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. European Journal of Operational Research 89, 445–456 (1992)CrossRefGoogle Scholar
  5. 5.
    Marichal, J.L.: An axiomatic approach of the discrete choquet integral as a tool to aggregate interacting criteria. IEEE Transactions on Fuzzy Systems 8, 800–807 (2000)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)MathSciNetGoogle Scholar
  7. 7.
    Sugeno, M.: Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology, Tokyo, Japan (1974)Google Scholar
  8. 8.
    Labreuche, C., Grabisch, M.: The choquel integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets and Systems 137, 11–16 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Marchant, T.: Towards a theory of mcdm: stepping away from social choice theory. Mathematical Social Sciences 45, 343–363 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tanaka, A., Murofushi, T.: A learning model using fuzzy measures and the choquet integral. In: 5th Fuzzy System Symposium, Kobe, Japan, pp.213–218 (1989)Google Scholar
  11. 11.
    Filev, D., Yager, R.: On the issue of obtaining owa operator weights. Fuzzy Sets and Systems 94, 157–169 (1998)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Grabisch, M., Nguyen, H., Walker, E.: Fundamentals of uncertainty calculi with applications to fuzzy inference. Kluwer Academic, Dordrecht (1995)Google Scholar
  13. 13.
    Grabisch, M., Roubens, M.: Application of the choquet intergral in multicriteria decision making. In: Grabisch, M., Murofushi, T., Sugeno, M. (eds.) Fuzzy Measures and Integrals, pp. 349–374. Physica-Verlag ,Heidelberg (2000)Google Scholar
  14. 14.
    Marichal, J.L., Roubens, M.: Determination of weights of interacting criteria from a reference set. European Journal of Operational Research 124, 641–650 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Murofushi, T., Sugeno, M.: Fuzzy measures and fuzzy integrals. In: Grabisch, M., Murofushi, T., Sugeno, M. (eds.) Fuzzy Measures and Integrals: Theory and Applications, pp. 3–41. Physica-Verlag ,Heidelberg (2000)Google Scholar
  16. 16.
    Marichal, J.L.: Behavioral analysis of aggregation in multicriteria decision aid. In: Fodor, J., Baets, B.D., Perny, P. (eds.) Preferences and Decisions under Incomplete Knowledge, pp. 153–178. Physica-Verlag ,Heidelberg (2000)Google Scholar
  17. 17.
    Shapley, L.S.: A value for n-person games. In: Contributions to the theory of games, vol. 2(28), pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
  18. 18.
    Murofushi, T., Soneda, S.: Techniques for reading fuzzy measures (iii): interaction index. In: 9th Fuzzy System Symposium, Saporo, Japan, pp.693–696 (1993)Google Scholar
  19. 19.
    Grabisch, M.: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92, 167–189 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Marichal, J.L.: Entropy of discrete choquet capacities. European Journal of Operational Research 3, 612–624 (2002)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Kojadinovic, I., Marichal, J.L., Roubens, M.: An axiomatic approach to the definition of the entropy of a discrete choquet capacity. In: 9th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2002), Annecy, France, pp. 763–768 (2002)Google Scholar
  22. 22.
    Kojadinovic, I.: Modeling interaction phenomena using non additive measures: applications in data analysis. PhD thesis, Université de La Réunion, France (2002)Google Scholar
  23. 23.
    Cover, T., Thomas, J.: Elements of Information Theory. John Wiley and Sons, Chichester (1991)zbMATHCrossRefGoogle Scholar
  24. 24.
    Morales, D., Pardo, L., Vajda, I.: Uncertainty of discrete stochastic systems: general theory and statistical theory. IEEE Trans. on System, Man and Cybernetics 26, 1–17 (1996)Google Scholar
  25. 25.
    Shannon, C.E.: A mathematical theory of communication. Bell Systems Technical Journal 27, 379–623 (1948)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Kojadinovic, I.: Modeling interaction phenomena using fuzzy measures: on the notions of interation and independence. Fuzzy Sets and Systems 135, 317–340 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Marichal, J.L., Meyer, P., Roubens, M.: On a sorting procedure in the presence of qualitative interacting points of view (2003) (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ivan Kojadinovic
    • 1
  1. 1.École polytechnique de l’université de Nantes, LINA CNRS FRE 2729NantesFrance

Personalised recommendations