Modeling the Distributed Control of the Lower Urinary Tract Using a Multiagent System

  • Daniel Ruiz Fernández
  • Juan Manuel García Chamizo
  • Francisco Maciá Pérez
  • Antonio Soriano Payá
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3131)


In this article a model of the biological neuronal regulator system of the lower urinary tract is presented. The design and the implementation of the model has been carried out using distributed artificial intelligence, more specifically a system based on agents that carry out tasks of perception, deliberation and execution. The biological regulator is formed by neuronal centres. In the model, each agent is modeled so that its behaviour is similar to that of a neuronal centre. The use of the agent paradigm in the model confers it important properties: adaptability, distributed computing, modularity, synchronous or asynchronous functioning. This strategy also allows a complex systems approach formed by connected elements whose interaction is partially well-known. We have simulated and tested the model comparing results with clinical studies.


Lower Urinary Tract Multiagent System Intelligent Agent Neuronal Centre Internal Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blok, B.F.M., Holstege, G.: The central control of micturition and continence: implications for urology. British Journal of Urology 83, 1–6 (1999)Google Scholar
  2. 2.
    Naoki Yoshimura, W.C.: de Groat: Neural Control of the Lower Urinary Tract. International Journal of Urology 4, 111–125 (1997)CrossRefGoogle Scholar
  3. 3.
    Inatomi, Y., Itoh, Y., Fujii, N., Nakanishi, K.: The spinal cord descending pathway for micturition: analisis in patients with spinal cord infarction. Journal of Neurological Sciences 157, 154–157 (1998)CrossRefGoogle Scholar
  4. 4.
    Hosein, R.A., Griffiths, D.: Neurourology and Urodynamics. Computer simulation of the Neural Control of Bladder and Urethra 9, 601–618 (1990)Google Scholar
  5. 5.
    van Duin, F., Rosier, P.F.W.M., Bemelmans, B.L.H., Wijkstra, H., Debruyne, F.M.J., Van Oosterom, A.: Comparison of Different Computer Models of the Neural Control System of the Lower Urinary Tract. Neurourology and Urodynamics 19, 289–310 (2000)CrossRefGoogle Scholar
  6. 6.
    García, J.M., Maciá, F.: A Mobile Agent-based Model for a Node Regeneration System. In: International Conference on Knowledge Based Computer Systems (KBCS 2000) ,Mumbai, India, pp. 82–93 (2000)Google Scholar
  7. 7.
    Walsh, P.C.: Campbell Urologia. Panamericana (1994)Google Scholar
  8. 8.
    Micheli, F., Nogués, M.A., Asconapé, J.J., Pardal, M.M.F., Biller, J.: Tratado de Neurología Clínica. Panamericana, 222–234 (2002)Google Scholar
  9. 9.
    García, J.M., Romero, J., Maciá, F., Soriano, A.: Modelado y simulación del regulador neuronal del tracto urinario inferior. Urodinámica Aplicada 15(2) (2002)Google Scholar
  10. 10.
    Abrams, P., Blaivas, J.G., Stanton, S., Andersen, J.T.: The Standardisation of Terminology of Lower Urinary Tract Function. Neurourology and Urodynamics 7, 403–426 (1988)CrossRefGoogle Scholar
  11. 11.
    William, C.: de Groat: Anatomy and Physiology of the Lower Urinary Tract. Urologic Clinics of North America 20(3), 383–401 (1993)Google Scholar
  12. 12.
    Kinder, M.V., Bastiaanssen, E.H.C., Janknegt, R.A., Marani, E.: The Neuronal Control of the Lower Urinary Tract: A Model of Architecture and Control Mechanisms. Archives of Physiology and Biochemistry 107, 203–222 (1999)CrossRefGoogle Scholar
  13. 13.
    Soriano Payá, A.: Modelado y Simulación del Regulador Neuronal del Tracto Urinario Inferior. Doctoral Thesis (2001)Google Scholar
  14. 14.
    García Chamizo, J., Maciá Pérez, F., Soriano Payá, A., Ruiz Fernández, D.: Simulation of the Neuronal Regulador of the Coger Urinary Tract Using a Multiagent System. LNCS, vol. 2687, pp. 591–598. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Ruiz Fernández, D.: Modelo de regulación desatendida de sistemas biológicos. Caracterización y corrección de disfunciones neurógenas urinarias en humanos. Doctoral Thesis (2003)Google Scholar
  16. 16.
    García, J.M., Soriano, A., Maciá, F., Ruiz, D.: Modelling of the sacral micturition centre using a deliberative intelligent agent. In: Proceedings of the IV International Workshop on Biosignal Interpretation (BSI 2002) ,Como, Italy, pp. 451–454 (2002)Google Scholar
  17. 17.
    le Feber, J., van Asselt, E., van Mastrigt, R.: Neurophysiological modelling of voiding in rats: urethral nerve response to urethral pressure and flow. American Journal Physiology 274, 1473–1481 (1998)Google Scholar
  18. 18.
    Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Morgan Kaufmann, San Francisco (1987)zbMATHGoogle Scholar
  19. 19.
    Maciá Pérez, F.: Modelos de administración de redes heterogéneas de computadores. Sistema de regeneración de nodos de red. Doctoral Thesis (2001)Google Scholar
  20. 20.
    Ferber, J.: An Introduction to Distributed Artificial Intelligence. Addison-Wesley, Reading (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Daniel Ruiz Fernández
    • 1
  • Juan Manuel García Chamizo
    • 1
  • Francisco Maciá Pérez
    • 1
  • Antonio Soriano Payá
    • 1
  1. 1.Industrial and Network Computing Research Unit, Computer Science and Technology DepartmentUniversity of AlicanteAlicanteSpain

Personalised recommendations