Skip to main content

Concept Types and Coreference in Simple Conceptual Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3127))

Abstract

This paper tackles the question of representing and reasoning with types and coreference in simple conceptual graphs (SGs). It presents a framework integrating a number of previous works. This proposal is guided by the usability of CGs in practice. In other words, notions should be easy to use in knowledge representation and operations for doing reasoning have to be efficiently realizable. We propose to use conjunctive concept types, which are conjunctions of primitive types. The conjunctive concept type set is defined by means of a primitive type set and a set of banned conjunctive types. For efficiency reasons our framework is based on projection. However it has been shown that projection is complete (w.r.t. logical deduction) only when SGs are in normal form. In some situations the original form of the SGs has to be kept; we thus define an extension of projection, called coref-projection, which is complete for SGs of any form. Coref-projection is in particular suitable for frameworks where it is not assumed that coreferent nodes are mergeable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aït-Kaci, H., Nasr, R.: Login: A logic programming language with builtin inheritance. Journal of Logic Programming 3(3), 185–215 (1986)

    Article  Google Scholar 

  2. Baget, J.-F.: Représenter des connaissances et raisonner avec des hypergraphes: de la projection à la dérivation sous contraintes. PhD thesis, Université Montpellier II (November 2001)

    Google Scholar 

  3. Baget, J.-F.: Simple conceptual graphs revisited: Hypergraphs and conjunctive types for efficient projection algorithms. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Beierle, C., Hedtstück, U., Pletat, U., Schmitt, P.H., Siekmann, J.H.: An order-sorted logic for knowledge representation systems. Artificial Intelligence 55(2), 149–191 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baader, F., Molitor, R., Tobies, S.: Tractable and Decidable Fragments of Conceptual Graphs. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 480–493. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Cao, T.H., Creasy, P.N., Wuwongse, V.: Fuzzy unification and resolution proof procedure for fuzzy conceptual graph programs. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 386–400. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Carbonneill, B., Haemmerlé, O.: Rock: Un système question/réponse fondé sur le formalisme des graphes conceptuels. In: Actes du 9-ième congres RFIA, pp. 159–169 (1994)

    Google Scholar 

  8. Chein, M., Mugnier, M.-L.: Conceptual Graphs: Fundamental Notions. Revue d’Intelligence Artificielle 6(4), 365–406 (1992), Available at http://www.lirmm.fr/~mugnier/

  9. Chein, M., Mugnier, M.-L.: Conceptual Graphs are also Graphs. Research Report RR-LIRMM 95-003, lirmm (1995), Available at http://www.lirmm.fr/~mugnier/

  10. Chein, M., Mugnier, M.-L., Simonet, G.: Nested Graphs: A Graphbased Knowledge Representation Model with FOL Semantics. In: Proc. of KR 1998, pp. 524–534. Morgan Kaufmann, San Francisco (1998), Revised version available at http://www.lirmm.fr/~mugnier/

  11. Dau, F.: The Logic System of Concept Graphs with Negation And Its Relationship to Predicate Logic. PhD thesis, Technische Universitat Darmstadt (2002)

    Google Scholar 

  12. Dau, F.: Concept graphs without negations: Standardmodels and standardgraphs. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambride University Press, Cambridge (2002)

    MATH  Google Scholar 

  14. Fall, A.: The foundations of taxonomic encodings. Computational Intelligence 14, 598–642 (1998)

    Article  MathSciNet  Google Scholar 

  15. Freese, R., Ježek, J., Nation, J.B.: Free Lattices. American Mathematical Society, Providence (1991)

    Google Scholar 

  16. Ghosh, B.C., Wuwongse, V.: A Direct Proof Procedure for Definite Conceptual Graphs Programs. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS (LNAI), vol. 954, pp. 158–172. Springer, Heidelberg (1995)

    Google Scholar 

  17. Kerdiles, G.: Saying it with Pictures: a logical landscape of conceptual graphs. PhD thesis, Université Montpellier II and University of Amsterdam (November 2001), Available at http://turing.wins.uva.nl/~kerdiles/

  18. Mugnier, M.-L., Chein, M.: Représenter des connaissances et raisonner avec des graphes. Revue d’Intelligence Artificielle 10(1), 7–56 (1996), Available at http://www.lirmm.fr/~mugnier/

  19. Mugnier, M.-L.: Knowledge Representation and Reasoning based on Graph Homomorphism. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 172–192. Springer, Heidelberg (2000), Revised version available at http://www.lirmm.fr/~mugnier/

  20. NCITS. Conceptual graphs: draft proposed American National Standard (dpANS). NCITS.T2/98-003 (1998); see also Sowa’s web site http://www.jfsowa.com

  21. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  22. Thierry, E.: Sur quelques interactions entre structures de données et algorithmes efficaces. PhD thesis, Université Montpellier II (October 2001)

    Google Scholar 

  23. Wermelinger, M., Lopes, J.G.: Basic conceptual structures theory. In: Tepfenhart, W.M., Dick, J.P., Sowa, J.F. (eds.) ICCS 1994. LNCS (LNAI), vol. 835, pp. 144–159. Springer, Heidelberg (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chein, M., Mugnier, ML. (2004). Concept Types and Coreference in Simple Conceptual Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds) Conceptual Structures at Work. ICCS 2004. Lecture Notes in Computer Science(), vol 3127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27769-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27769-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22392-4

  • Online ISBN: 978-3-540-27769-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics