Advertisement

Process Algebra

A Petri-Net-Oriented Tutorial
  • Eike Best
  • Maciej Koutny
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3098)

Abstract

Process algebras aim at defining algebraic calculi for concurrency and communication between concurrent processes. This paper describes some of the issues that would seem to be worth discussing when process algebraic ideas are related to Petri net theoretical concepts.

Keywords

Petri nets process algebras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Fokkink, W.J., Verhoef, C.: Structured operational semantics. In: [4], pp. 197–292Google Scholar
  2. 2.
    Baeten, J.C.M., Middelburg, C.A.: Process algebra with timing: Real time and discrete time. In: [4], pp. 627–684Google Scholar
  3. 3.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  4. 4.
    Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. Elsevier Science B.V., Amsterdam (2001)zbMATHGoogle Scholar
  5. 5.
    Best, E.: Semantics of Sequential and Parallel Programs. Prentice-Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar
  6. 6.
    Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Boudol, G., Castellani, I.: Flow models of distributed computations: Three equivalent semantics for CCS. Information and Computation 114(2), 247–314 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Campbell, R.H., Habermann, A.N.: The specification of process synchronization by path expressions. In: Symposium on Operating Systems, pp. 89–102 (1974)Google Scholar
  9. 9.
    Castellani, I.: Process algebras with localities. In: [4], pp. 945–1045Google Scholar
  10. 10.
    Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation is decidable for basic parallel processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 143–157. Springer, Heidelberg (1993)Google Scholar
  11. 11.
    Degano, P., De Nicola, R., Montanari, U.: A partial ordering semantics for CCS. Theoretical Computer Science 75(3), 223–262 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  13. 13.
    Esparza, J.: Model checking using net unfoldings. Science of Computer Programming 23, 151–195 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    van Glabbeek, R.: The linear time – branching time spectrum I. In: [4], pp. 3–99Google Scholar
  15. 15.
    van Glabbeek, R., Goltz, U.: Refinement of actions in causality based models. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 267–300. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    van Glabbeek, R., Vaandrager, F.W.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)Google Scholar
  17. 17.
    Goltz, U.: Über die Darstellung von CCS-Programmen durch Petrinetze. Dissertation, Gesellschaft für Mathematik und Datenverarbeitung (1988)Google Scholar
  18. 18.
    Hoare, C.A.R.: Communicating sequential processes. Comm. of the ACM 21, 666–677 (1978)zbMATHCrossRefGoogle Scholar
  19. 19.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  20. 20.
    Janicki, R., Lauer, P.E.: Specification and Analysis of Concurrent Systems – the COSY Approach. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  21. 21.
    Keller, R.: Formal verification of parallel programs. Comm. of the ACM 19, 371–384 (1976)zbMATHCrossRefGoogle Scholar
  22. 22.
    Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings. Acta Informatica 40, 95–118 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Klaudel, H., Pommereau, F.: M-nets: a survey (2003)(manuscript) (submitted)Google Scholar
  24. 24.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)Google Scholar
  25. 25.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  26. 26.
    Olderog, E.R.: Nets, Terms and Formulas. Cambridge Tracts in Theoretical Computer Science, vol. 23. Cambridge University Press, Cambridge (1991)zbMATHCrossRefGoogle Scholar
  27. 27.
    Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  28. 28.
    Plotkin, G.D.: A structural approach to operational semantics. Report FN-19, Computer Science Department, University of Aarhus (1981)Google Scholar
  29. 29.
    Priese, L., Wimmel, H.: Petri-Netze. In: Theoretische Informatik. Springer, Heidelberg (2003)Google Scholar
  30. 30.
    Sewell, P.: Nonaxiomatisability of equivalences over finite state processes. Annals of Pure and Applied Logic 90(1-3), 163–191 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Stehno, C.: Real-time systems design with PEP. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 476–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  32. 32.
    Taubner, D.A. (ed.): Finite Representations of CCS and TCSP Programs by Automata and Petri Nets. LNCS, vol. 369. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  33. 33.
    Winskel, G.: Petri nets, algebras, morphisms and compositionality. Information and Control 72, 197–238 (1987)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Eike Best
    • 1
  • Maciej Koutny
    • 2
  1. 1.Parallel Systems, Faculty of Computing ScienceCarl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.School of Computing ScienceUniversity of NewcastleNewcastle upon TyneUnited Kingdom

Personalised recommendations