Petri Nets and Dependability

  • Simona Bernardi
  • Andrea Bobbio
  • Susanna Donatelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3098)


Dependability evaluation main objective is to assess the ability of a system to correctly function over time. There are many possible approaches to the evaluation of dependability: in these notes we are mainly concerned with dependability evaluation based on probabilistic models. Starting from simple probabilistic models with very efficient solution methods we shall then come to the main topic of the paper: how Petri nets can be used to evaluate the dependability of complex systems.


Class Diagram Fault Tree Continuous Time Markov Chain Automation Function Reachability Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. J. Wiley, Chichester (1995)zbMATHGoogle Scholar
  2. 2.
    Ajmone Marsan, M., Bobbio, A., Donatelli, S.: Petri Nets in performance analysis, an introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 211–256. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York (1975)zbMATHGoogle Scholar
  4. 4.
    Bernardi, S.: Building Stochastic Petri Net models for the verification of complex software systems. PhD thesis, Dipartimento di Informatica, Università di Torino (April 2003)Google Scholar
  5. 5.
    Bernardi, S., Bertoncello, C., Donatelli, S., Franceschinis, G., Gaeta, G., Gribaudo, M., Horváth, A.: GreatSPN in the new millenium. Technical report. In Tools of Aachen 2001, International MultiConference on Measurement, Modelling and Evaluation of Computer-Communication System (2001)Google Scholar
  6. 6.
    Bernardi, S., Donatelli, S.: Performance Validation of Fault-Tolerance Software: A Compositional Approach. In: IEEE Computer Society (ed.) Proc. of the International Conference on Dependable Systems and Networks, DSN 2001, Göteborg, Sweden, July 2001, pp. 379–388 (2001)Google Scholar
  7. 7.
    Bernardi, S., Donatelli, S.: Building Petri net scenarios for dependable automation systems. In: IEEE Computer Society (ed.) Proc. of the 10th International Workshop on Petri Nets and Performance Models (PNPM 2003), Urbana-Champain, Illinois, USA, September 2003, pp. 72–81 (2003)Google Scholar
  8. 8.
    Bernardi, S., Donatelli, S.: Stochastic Petri nets and inheritance for dependability modelling. In: Proc. of the 10th Pacific Rim International Symposium on Dependable Computing (PRDC 2004), Papeete, tahiti, French Polynesia, March 2004. IEEE C.S, Los Alamitos (2004)Google Scholar
  9. 9.
    Bernardi, S., Donatelli, S., Dondossola, G.: Methodology for the generation of the modeling scenarios starting from the requisite specifications and its application to the collected requirements. Deliverable D1.3b - DepAuDE IST Project 25434 (June 2002)Google Scholar
  10. 10.
    Bernardi, S., Donatelli, S., Horváth, A.: Special section on the pratical use of high-level Petri Nets: Implementing Compositionality for Stochastic Petri Nets. Journal of Software Tools for Technology Transfer (STTT) 3(4), 417–430 (2001)zbMATHGoogle Scholar
  11. 11.
    Bernardi, S., Donatelli, S., Merseguer, J.: From UML Sequence Diagrams and Statecharts to analysable Petri Net models. In: Proceedings of the 3rd International Workshop on Software and Performance, Rome, Italy, July 2002, pp. 35–45 (2002)Google Scholar
  12. 12.
    Betous-Almeida, C., Kanoun, K.: Stepwise Construction and Refinement of Dependability Models. In: IEEE Computer Society (ed.) Proc. of the International Conference on Dependable Systems and Networks, DSN 2002, Washington, D.C., USA, June 2002, pp. 515–524 (2002)Google Scholar
  13. 13.
    Bobbio, A.: Teoria e Metodi di affidabilità. Dispense COREP - Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria, Italia (in italian)Google Scholar
  14. 14.
    Bobbio, A.: Petri Nets Generating Markov Reward Models for Performance/Reliability Analysis of Degradable Systems. In: Puigjaner, R., et al. (eds.) Proceedings of the Fourth International Conference 1988, Modeling Techniques and Tools for Computer Performance Evaluation, Palma, Spain, pp. 353–365. Plenum, New York (1989)Google Scholar
  15. 15.
    Bobbio, A., Franceschinis, G., Gaeta, R., Portinale, L.: Parametric Fault Tree for the Dependability Analysis of Redundant Systems and Its High-Level Petri Net Semantics. IEEE Trans. Software Eng. 29(3), 270–287 (2003)CrossRefGoogle Scholar
  16. 16.
    Bondavalli, A., Dal Cin, M., Latella, D., Majzik, I., Pataricza, A., Savoia, G.: Dependability analysis in the early phases of UML-based system design. International Journal of Computer Systems Science & Engineering 16(5), 265–275 (2001)Google Scholar
  17. 17.
    Botti, O., De Florio, V., Deconinck, G., Cassinari, F., Donatelli, S., Bobbio, A., Klein, A., Kufner, H., Lauwereins, R., Thurner, E., Verhulst, E.: TIRAN: Flexible and Portable Fault Tolerance Solutions for Cost Effective Dependable Applications. In: Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 1166–1170. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: StochasticWell-Formed coloured nets for symmetric modelling applications. IEEE Transaction on Computers 42(11), 1343–1360 (1993)CrossRefGoogle Scholar
  19. 19.
    Choi, H., Kulkarni, V.G., Trivedi, K.: Markov Regenerative Stochastic Petri Nets. Performance Evaluation 20, 337–357 (1994)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ciardo, G., Trivedi, K.S.: SPNP: The Stochastic Petri Net Package (Version 3.1). In: Proc. 1st Int. Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 1993), pp. 390–391. IEEE Comp. Soc. Press, Los Alamitos (1993)Google Scholar
  21. 21.
    International Electrotechnical Commission. IEC-60300-3-1: Dependability Management. IEC, 3 rue de Varembé CH 1211 Geneva, Switzerland (2001)Google Scholar
  22. 22.
    Contini, S.: Advances on fault tree and event tree techniques. In: Colombo, A.G., de Bustamante, A.S. (eds.) System Reliability Assessment, pp. 77–102. Kluwer Academic P.G, Dordrecht (1990)Google Scholar
  23. 23.
    Couvillion, J.A., Freire, R., Johnson, R., Douglas Obal II, W., Qureshi, M.A., Rai, M., Sanders, W.H., Tvedt, J.E.: Performability Modeling with UltraSAN. IEEE Software 8(5), 69–80 (1991)CrossRefGoogle Scholar
  24. 24.
    Cox, D.R.: Renewal theory. Chapman & Hall, London (1962)zbMATHGoogle Scholar
  25. 25.
    Cox, D.R., Miller, H.D.: The theory of stochastic processes. Chapman and Hall, London (1965)zbMATHGoogle Scholar
  26. 26.
    DepAuDE EEC-IST project 2000-25434,
  27. 27.
    Donatelli, S., Franceschinis, G.: The PSR methodology: integrating hardware and software models. In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091. Springer, Heidelberg (1996)Google Scholar
  28. 28.
    Dugan, J.B., Trivedi, K.S., Geist, R.M., Nicola, V.F.: Extended Stochastic Petri Nets: Applications and Analysis. In: Gelenbe, E. (ed.) Proc. of the 10th Int. Symp., PERFORMANCE 1984: Models of Comput. System Performance, Paris, pp. 507–519. Elsevier, Amsterdam (1984)Google Scholar
  29. 29.
    Dugan, J.B., Trivedi, K.S.: Coverage modelling for dependability analysis of fault tolerant systems. IEEE Transaction on Computers 38(6), 775–787 (1989)CrossRefGoogle Scholar
  30. 30.
    Béounes, C., et al.: SURF-2: A Program for Dependability Evaluation of Complex Hardware and Software Systems. In: 23rd Int. Symp. on Fault-Tolerant Computing, Toulouse, France, pp. 668–673 (1993)Google Scholar
  31. 31.
    Fuqua, N.B.: Reliability Engineering for Electronic Design. Marcel Dekker Inc., New York (1987)Google Scholar
  32. 32.
    Henley, E.J., Kumamoto, H.: Reliability Engineering and Risk Assessment. Prentice Hall, Englewood Cliffs (1981)Google Scholar
  33. 33.
    Hura, G.S.: A Petri Net Approach to Enumerate all System Success Paths for Reliability Evaluation of a Complex System. Microelectron. Reliab. (GB) 22(3), 427–428 (1982)CrossRefGoogle Scholar
  34. 34.
    Hura, G.S., Atwood, J.W.: The Use of Petri Nets to Analyze Coherent Fault Trees. IEEE. Trans. Reliab. (USA) 37(5), 469–474 (1988)zbMATHCrossRefGoogle Scholar
  35. 35.
    Ibe, O., Sathaye, A., Howe, R., Trivedi, K.S.: Stochastic Petri Net Modeling of VAXcluster Availability. In: Proc. Third Int. Workshop on Petri Nets and Performance Models (PNPM 1989), Kyoto, Japan, pp. 112–121 (1989)Google Scholar
  36. 36.
    IEC-10125. Fault Tree Analysis. IEC-Standard-No. 10125 (1990)Google Scholar
  37. 37.
    IEC-61165. Application of Markov techniques. IEC-Standard-No. 61165 (1995)Google Scholar
  38. 38.
    Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Monographs in Theoretical Computer Science, vol. 1. Springer, Heidelberg (1997) ISBN:3-540- 60943-1zbMATHGoogle Scholar
  39. 39.
    Kanoun, K., Borrel, M., Moreteveille, T., Peytavin, A.: Modeling the Dependability of CAUTRA, a Subset of the French Air Traffic Control System. In: Proceedings of the 26th Int. Symp. Fault-Tolerant Computing (FTCS-26), Sendai, Japan, pp. 95–515. LAASREPORTGoogle Scholar
  40. 40.
    Kanoun, K., Borrel, M.: Dependability of fault-tolerant systems, Explicit modeling of the interactions between hardware and software. In: Proc. of the 2nd Annual IEEE International Computer Performance and Dependability Symposium (IPDS 1996), Urbana Champain, USA, September 1996, pp. 252–261. IEEE-CS Press, Los Alamitos (1996)CrossRefGoogle Scholar
  41. 41.
    Kaufmann, A., Grouchko, D., Cruon, R.: Mathematical Models for the Study of the Reliability of Systems. Academic Press, London (1977)Google Scholar
  42. 42.
    Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman and Hall, Boca Raton (1995)zbMATHGoogle Scholar
  43. 43.
    Laprie, J.C.: Dependability – Its attributes, impairments and means. In: Randell, B., Laprie, J.C., Kopetz, H., Littlewood, B. (eds.) Predictably Dependable Computing Systems, pp. 3–24. Springer, Heidelberg (1995)Google Scholar
  44. 44.
    Randell, B., Laprie, J.C., Avizienis, A.: Fundamental Concepts of Dependability. Technical report, LAAS - NewCastle University - UCLA, LAAS Report no. 01-145, NewCastle University Report no. CS-TR-739, UCLA CSD Report no. 010028 (2001)Google Scholar
  45. 45.
    Malhotra, M., Trivedi, K.S.: Dependability Modelling using Petri net based models. IEEE Transactions on Reliability 44(3), 428–440 (1995)CrossRefGoogle Scholar
  46. 46.
    Ajmone Marsan, M., Bobbio, A., Conte, G., Cumani, A.: Performance analysis of degradable multiprocessor systems using Generalized Stochastic Petri Nets. Distributed Processing Technical Committee Newsletter 6(SI-1), 47–54 (1984)Google Scholar
  47. 47.
    Molloy, M.K.: Performance analysis using Stochastic Petri Nets. IEEE Transaction on Computers 31(9), 913–917 (1982)CrossRefGoogle Scholar
  48. 48.
    Muppala, J., Ciardo, G., Trivedi, K.: Stochastic reward nets for reliability prediction. Communications in Reliability, Maintainability and Serviceability 1(2), 9–20 (1994)Google Scholar
  49. 49.
    Muppala, J., Fricks, R., Trivedi, K.S.: Techniques for System Dependability Evaluation. In: Grassman, W. (ed.) Computational Probability, The Netherlands, pp. 445–480. Kluwer Academic, Dordrecht (2000)Google Scholar
  50. 50.
    Mura, I., Chiaradonna, S., Bondavalli, A.: Modelli teorici e pratici per la rappresentazione del processo di guasto. Progetto di ricerca PDCC-ENEA: Aspetti specifici e tecniche di tolleranza ai guasti (in italian)Google Scholar
  51. 51.
    Papoulis, A.: Probability, Random Variables and Stochastic Processes. Mc Graw Hill, New York (1965)zbMATHGoogle Scholar
  52. 52.
    Performance Evaluation group of Torino. The GreatSPN tool,
  53. 53.
    Pomello, L., Rozenberg, G., Simone, C.: A Survey of Equivalence Notions for Net Based Systems. In: Rozenberg, G. (ed.) APN 1992. LNCS, vol. 609, pp. 410–472. Springer, Heidelberg (1992)Google Scholar
  54. 54.
    Rabah, M., Kanoun, K.: Performability evaluation of multipurpose multiprocessor systems: the separation of concerns approach. IEEE Transactions on Computers, Special Issue on Reliable Distributed Systems 52(2), 223–236 (2003)Google Scholar
  55. 55.
    Sahner, R.A., Trivedi, K.S.: Reliability Modeling using SHARPE. IEEE Transactions on Reliability R-36(2), 186–193 (1987)CrossRefGoogle Scholar
  56. 56.
    Sanders, W.H., Malhis, L.M.: Dependability Evaluation Using Composed SAN-Based Reward Models. Journal of Parallel and Distributed Computing 15(3), 238–254 (1992)CrossRefGoogle Scholar
  57. 57.
    Sanders, W.H., Meyer, J.F.: Stochastic Activity Networks: Formal Definitions and Concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, p. 315. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  58. 58.
    Schneeweiss, W.: Petri Nets for Reliability Modelling. LiLoLe-Verlag GmbH, Hagen (1999)Google Scholar
  59. 59.
    Schneeweiss, W.G.: The Fault Tree Method. LiLoLe Verlag (1999)Google Scholar
  60. 60.
    Shooman, M.L.: Probabilistic reliability: an engineering approach. McGraw Hill, New York (1968)Google Scholar
  61. 61.
    Stewart, W.J.: Introduction to the Numerical Solution ofMarkov Chains. Princeton University Press, Princeton (1994)Google Scholar
  62. 62.
    Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo Fault Tree Analysis Tool. In: Proceedings of the 29th Annual International Symposium on Fault-Tolerant Computing, Madison, Wisconsin. IEEE, Los Alamitos (1999)Google Scholar
  63. 63.
    Trivedi, K.: Probability & Staticstics with Reliability, Queueing & Computer Science applications. Prentice Hall, Englewood Cliffs (1982)Google Scholar
  64. 64.
    Trivedi, K.: Probability & Statistics with Reliability, Queueing & Computer Science applications, II edn. Wiley, Chichester (2001)Google Scholar
  65. 65.
    Van der Aalst, W.M.P.: Inheritance of Dynamic Behavior in UML. In: Moldt, D. (ed.) Proc. of the 2th Workshop on Modelling of Objects, Components and Agents, MOCA 2002, Aarhus, Denmark (August 2002); Technical Report ISSN 0105-8517, Dept. of Computer Science, University of AarhusGoogle Scholar
  66. 66.
    Van der Aalst, W.M.P., Basten, T.: Life-cycle inheritance: A Petri-net based approach. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 62–81. Springer, Heidelberg (1997)Google Scholar
  67. 67.
    Xie, X., Shatz, S.M.: Development of Class-level and Instance-level DesignModel for Distributed Systems. International Journal of Informatica, special issue on Component Based Software Development 25, 465–474 (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Simona Bernardi
    • 1
  • Andrea Bobbio
    • 2
  • Susanna Donatelli
    • 1
  1. 1.Dipartimento di InformaticaUniversità di TorinoTorinoItaly
  2. 2.Dipartimento di InformaticaUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations