Advertisement

Graph Grammars and Petri Net Transformations

  • Hartmut Ehrig
  • Julia Padberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3098)

Abstract

The aim of this paper is a tutorial introduction to graph grammars and graph transformations on one hand and to Petri net transformations on the other hand. In addition to an introduction to both areas the paper shows how they have influenced each other. The concurrency concepts and semantics of graph transformations have been generalized from those of Petri net using the fact that the token game of Petri nets can be considered as a graph transformation step on discrete graphs. On the other hand each Petri net can be considered as a graph, such that graph transformations can be used to change the net structure of Petri nets. This leads to a rule based approach for the development of Petri nets, where the nets in different development stages are related by Petri net transformations.

Keywords

Conveyor Belt Graph Transformation Graph Grammar Graph Transformation System Glue Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Baldan, P.: Modelling Concurrent Computations: From Contextual Petri Nets to Graph Grammars. PhD thesis, University of Pisa (2000)Google Scholar
  3. 3.
    Baldan, P., Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Löwe, M.: Concurrent Semantics of Algebraic Graph Transformations. In: Rozenberg, G. (ed.) The Handbook of Graph Grammars and Computing by Graph Transformations. Concurrency, Parallelism and Distribution, vol. 3. World Scientific, Singapore (1999)Google Scholar
  4. 4.
    Bardohl, R., Ermel, C.: Scenario Animation for Visual Behavior Models: A Generic Approach Applied to Petri Nets. In: Juhas, G., Desel, J. (eds.) Proc. 10th Workshop on Algorithms and Tools for Petri Nets (AWPN 2003) (2003)Google Scholar
  5. 5.
    Berthelot, G.: Checking properties of nets using transformations. In: Rozenberg, G. (ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  6. 6.
    Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1987)Google Scholar
  7. 7.
    David, R., Alla, H. (eds.): Petri Nets and Grafcet. Prentice-Hall, UK (1992)zbMATHGoogle Scholar
  8. 8.
    Ermel, C., Bardohl, R., Ehrig, H.: Specification and implementation of animation views for Petri nets. In: DFG Research Group Petri Net Technology, Proc. of 2nd International Colloquium on Petri Net Technology for Comunication Based Systems (2001)Google Scholar
  9. 9.
    Ermel, C., Bardohl, R., Ehrig, H.: Generation of animation views for Petri nets in GenGED. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based Systems. LNCS, vol. 2472. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2. World Scientific, Singapore (1999)Google Scholar
  11. 11.
    Ehrig, H., Gajewsky, M., Parisi-Presicce, F.: Number 3: Concurrency, Parallelism, and Distribution in Handbook of Graph Grammars and Computing by Graph Transformations. In: High-level replacement systems with applications to algebraic apecifications and Petri nets, vol. ch. 6, pp. 341–400. World Scientific, Singapore (1999)Google Scholar
  12. 12.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and concurrency in high-level replacement systems. Math. Struct. in Comp. Science 1, 361–404 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and concurrency in high-level replacement systems. Math. Struct. in Comp. Science 1, 361–404 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ehrig, H.: Introduction to the algebraic theory of graph grammars (A survey). In: Ng, E.W., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  15. 15.
    Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 3: Concurrency, Parallelism, and Distribution. World Scientific, Singapore (1999)zbMATHGoogle Scholar
  16. 16.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and Initial Semantics. EATCS Monographs on Theoretical Computer Science, vol. 6. Springer, Berlin (1985)zbMATHGoogle Scholar
  17. 17.
    Ehrig, H., Pfender, M., Schneider, H.J.: Graph grammars: an algebraic approach. In: 14th Annual IEEE Symposium on Switching and Automata Theory, pp. 167–180. IEEE, Los Alamitos (1973)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Jensen, K., Christensen, S., Huber, P., Holla, M.: Design/CPN. A Reference Manual. Meta Software Cooperation, 125 Cambridge Park Drive, Cambridge Ma 02140, USA (1991)Google Scholar
  20. 20.
    Jensen, K.: Coloured Petri nets. Basic Concepts, Analysis Methods and Practical Use, vol. 1: Basic Concepts. EATCS Monographs in Theoretical Computer Science edition. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  21. 21.
    Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use, vol. 2: Analysis Methods. EATCS Monographs in Theoretical Computer Science edition. Springer, Heidelberg (1994)Google Scholar
  22. 22.
    Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use, vol. 3: Practical Use. EATCS Monographs in Theoretical Computer Science edition. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  23. 23.
    Kindler, E., Weber, M.: The Petri net kernel – an infrastructure for building Petri net tools. Software Tools for Technology Transfer 3(4), 486–497 (2001)zbMATHGoogle Scholar
  24. 24.
    Lack, S., Sobociski, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  25. 25.
    Meseguer, J., Montanari, U.: Petri Nets are Monoids. Information and Computation 88(2), 105–155 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Padberg, J.: Survey of high-level replacement systems. Technical Report 93-8, Technical University of Berlin (1993)Google Scholar
  27. 27.
    Padberg, J.: Categorical approach to horizontal structuring and refinement of high-level replacement systems. Applied Categorical Structures 7(4), 371–403 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Padberg, J., Ehrig, H., Ribeiro, L.: Algebraic high-level net transformation systems. Mathematical Structures in Computer Science 5, 217–256 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Padberg, J., Urbášek, M.: Rule-based refinement of Petri nets: A survey. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based Systems. LNCS, vol. 2472. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Reisig, W.: Petri Nets and Algebraic Specifications. Theoretical Computer Science 80, 1–34 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Ribeiro, L., Ehrig, H., Padberg, J.: Formal development of concurrent systems using algebraic high-level nets and transformations. In: Proc. VII Simpósio Brasileiro de Engenharia de Software, pp. 1–16, Tech-report no. 93-13, TU Berlin (1993)Google Scholar
  32. 32.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations, Vol. 1: Foundations. World Scientific, Singapore (1997)zbMATHGoogle Scholar
  33. 33.
    Savi, V.M., Xie, X.: Liveness and boundedness analysis for petri nets with event graph modules. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 328–347. Springer, Heidelberg (1992)Google Scholar
  34. 34.
    Vautherin, J.: Parallel system specification with coloured Petri nets. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266, pp. 293–308. Springer, Heidelberg (1987)Google Scholar
  35. 35.
    van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)Google Scholar
  36. 36.
    Winskel, G.: Petri nets, algebras, morphisms, and compositionality. Information and Computation 72, 197–238 (1987)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hartmut Ehrig
    • 1
  • Julia Padberg
    • 1
  1. 1.Institute for Software Technology and Theoretical Computer ScienceTechnical University BerlinGermany

Personalised recommendations