Skip to main content

Modeling the Compressor Component, Design and Off-Design

  • Chapter
Turbomachinery Flow Physics and Dynamic Performance
  • 2580 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References, Chapter 16

  1. Lieblein, S., Schwenk, F., Broderick, R.L., Diffusions factor for estimating losses and limiting blade loadings in axial flow compressor blade elements, NACA RM E53D01 June 1953.

    Google Scholar 

  2. Lieblein, S., Review of high performance axial flow compressor blade element theory, NACA RME 53L22 April 1954.

    Google Scholar 

  3. Lieblein, S., Roudebush, W. H., Theoretical loss relations for low speed two dimensional cascade flow NACA Technical Note 3662 March 1956.

    Google Scholar 

  4. Lieblein, S., Analysis of experimental low-speed loss and stall characteristics of two-dimensional compressor blade cascades, NACA RM E57A28 March 1957.

    Google Scholar 

  5. Lieblein, S., Loss and stall analysis of compressor cascades, ASME Journal of Basic Engineering. Sept. 1959.

    Google Scholar 

  6. NASA SP-36 NASA Report, 1965.

    Google Scholar 

  7. Miller, G.R., Hartmann, M.J., Experimental shock configuration and shock losses in a transonic compressor rotor at design point NACA RM E58A14b, June 1958.

    Google Scholar 

  8. Miller, G.R., Lewis, G.W., Hartman, M.J., Shock losses in transonic compressor blade rows ASME Journal for Engineering and Power July 1961, pp. 235–241.

    Google Scholar 

  9. Schwenk, F.C., Lewis, G.W., Hartmann, M.J., A preliminary analysis of the magnitude of shock losses in transonic compressors NACA RM #57A30 March 1957.

    Google Scholar 

  10. Gostelow, J.P., Krabacher, K.W., Smith, L.H., Performance comparisons of the high Mach number compressor rotor blading NASA Washington 1968, NASA CR-1256.

    Google Scholar 

  11. Gostelow, J.P., Design performance evaluation of four transonic compressor rotors, ASMEJournal for Engineering and Power, January 1971.

    Google Scholar 

  12. Seylor, D.R., Smith, L.H., Single stage experimental evaluation of high Mach number compressor rotor blading, Part I, Design of rotor blading. NASA CR-54581, GE R66fpd321P, 1967.

    Google Scholar 

  13. Seylor, D.R., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part II, Performance of rotor 1B. NASA CR-54582, GE R67fpd236, 1967.

    Google Scholar 

  14. Gostelow, J.P., Krabacher, K.W., Single stage experimental evaluation of high Mach number compressor rotor blading, Part III, Performance of Rotor 2E. NASA CR-54583, 1967.

    Google Scholar 

  15. Krabacher, K.W., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part IV, Performance of Rotor 2D. NASA CR-54584, 1967.

    Google Scholar 

  16. Krabacher, K.W., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part V, Performance of Rotor 2B. NASA CR-54585, 1967.

    Google Scholar 

  17. Monsarrat, N.T., Keenan, M.J., Tramm, P.C., Design report, Single stage evaluation of high Mach number compressor stages, NASA CR-72562 PWA-3546, July 1969.

    Google Scholar 

  18. Koch, C.C., Smith, L.H., Loss sources and magnitudes in axial-flow compressors, ASME Journal of Engineering and Power, January 5, Vol. 98, NO. 3, pp. 411–424, July 1976.

    Article  Google Scholar 

  19. Schobeiri, M.T., Verlustkorrelationen für transsonische Kompressoren, BBC-Studie, TN-78/20, 1987.

    Google Scholar 

  20. König, W.M., Hennecke, D.K., Fottner, L., Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part I-A Model for Subsonic Flow, ASME Paper,No. 94-GT-335.

    Google Scholar 

  21. Schobeiri, M.T., Verlustkorrelationen für transsonische Kompressoren, BBC-Studie, TN-78/20, 1987.

    Google Scholar 

  22. Schobeiri, M.T., “Advanced Compressors Loss Correlations, Part II: Experimental Verifications,” International Journal of Rotating Machinery, 1997, Vol. 3, pp. 179–187.

    Article  Google Scholar 

  23. Levine, Ph., Two-dimensional inlet conditions for a supersonic compressor with curved blades, Journal of Applied Mechanics, Vol. 24, No. 2, June 1957.

    Google Scholar 

  24. Balzer, R.L., A method for predicting compressor cascade total pressure losses when the inletrelative Mach number is greater than unity, ASME Paper 70-GT-57.

    Google Scholar 

  25. Swan, W.C., A practical method of predicting transonic compressor performance, ASME Journalfor Engineering and Power, Vol. 83, pp. 322–330, July 1961.

    Article  Google Scholar 

  26. Lieblein, S., Roudebush, W. H., Theoretical loss relations for low speed two dimensional cascade flow NACA Technical Note 3662 March 1956.

    Google Scholar 

  27. Lieblein, S., Schwenk, F., Broderick, R.L., Diffusions factor for estimating losses and limitingblade loadings in axial flow compressor blade elements, NACA RM E53D01 June 1953.

    Google Scholar 

  28. Lieblein, S., Loss and stall analysis of compressor cascades, ASME Journal of Basic Engineering. Sept. 1959.

    Google Scholar 

  29. Lieblein, S., Analysis of experimental low-speed loss and stall characteristics of two-dimensional compressor blade cascades, NACA RM E57A28 March 1957.

    Google Scholar 

  30. Lieblein, S., Analysis of experimental low-speed loss and stall characteristics of two-dimensional compressor blade cascades, NACA RM E57A28 March 1957.

    Google Scholar 

  31. Smith, L.H., Private communication with the author and the GE-Design Information Memorandum 1954: A Note on The NACA Diffusion Factor, 1995.

    Google Scholar 

  32. NASA SP-36 NASA Report 1976.

    Google Scholar 

  33. Gostelow, J.P., Krabacher, K.W., Single stage experimental evaluation of high Mach number compressor rotor blading, Part III, Performance of rotor 2E. NASA CR-54583, 1967.

    Google Scholar 

  34. Gostelow, J.P., Design performance evaluation of four transonic compressor rotors, ASME Journal for Engineering and Power, January 1971.

    Google Scholar 

  35. Seylor, D.R., Smith, L.H., Single stage experimental evaluation of high Mach number compressor rotor blading, Part I, Design of rotor blading. NASA CR-54581, GE R66fpd321P, 1967.

    Google Scholar 

  36. Seylor, D.R., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part II, Performance of rotor 1B. NASA CR-54582, GE R67fpd236, 1967.

    Google Scholar 

  37. Gostelow, J.P., Krabacher, K.W., Smith, L.H., Performance comparisons of the high Mach number compressor rotor blading NASA Washington 1968, NASA CR-1256.

    Google Scholar 

  38. Krabacher, K.W., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part IV, Performance of rotor 2D. NASA CR-54584, 1967.

    Google Scholar 

  39. Krabacher, K.W., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part V, Performance of Rotor 2B. NASA CR-54585, 1967.

    Google Scholar 

  40. Monsarrat, N.T., Keenan, M.J., Tramm, P.C., Design report, Single stage evaluation of high Mach number compressor stages, NASA CR-72562 PWA-3546, July 1969.

    Google Scholar 

  41. Monsarrat, N.T., Keenan, M.J., Tramm, P.C., Design report, Single stage evaluation of high Mach number compressor stages, NASA CR-72562 PWA-3546, July 1969.

    Google Scholar 

  42. Sulam, D.H., Keenan, M.J., Flynn, J.T., 1970. Single stage evaluation of highly loaded high Mach number compressor stages. II Data and performance of a multi-circular arc rotor. NASA CR-72694 PWA

    Google Scholar 

  43. Monsarrat, N.T., Keenan, M.J., Tramm, P.C., Design report, Single stage evaluation of high Mach number compressor stages, NASA CR-72562 PWA-3546, July 1969.

    Google Scholar 

  44. Monsarrat, N.T., Keenan, M.J., Tramm, P.C., Design report, Single stage evaluation of high Mach number compressor stages, NASA CR-72562 PWA-3546, July 1969.

    Google Scholar 

  45. Gostelow, J.P., Krabacher, K.W., Smith, L.H., Performance comparisons of the high Mach number compressor rotor blading NASA Washington 1968, NASA CR-1256.

    Google Scholar 

  46. Miller, G.R., Hartmann, M.J., Experimental shock configuration and shock losses in a transonic compressor rotor at design point NACA RM E58A14b, June 1958.

    Google Scholar 

  47. Miller, G.R., Lewis, G.W., Hartman, M.J., Shock losses in transonic compressor blade rows ASME Journal for Engineering and Power July 1961, pp. 235–241.

    Google Scholar 

  48. Schwenk, F.C., Lewis, G.W., Hartmann, M.J., A preliminary analysis of the magnitude of shock losses in transonic compressors NACA RM #57A30 March 1957.

    Google Scholar 

  49. Schwenk, F.C., Lewis, G.W., Hartmann, M.J., A preliminary analysis of the magnitude of shocklosses in transonic compressors NACA RM #57A30 March 1957.

    Google Scholar 

  50. Levine, Ph., Two-dimensional inlet conditions for a supersonic compressor with curved blades, Journal of Applied Mechanics, Vol. 24, No. 2, June 1957.

    Google Scholar 

  51. Balzer, R.L., A method for predicting compressor cascade total pressure losses when the inlet relative Mach number is greater than unity, ASME Paper 70-GT-57.

    Google Scholar 

  52. Swan, W.C., A practical method of predicting transonic compressor performance, ASME Journal for Engineering and Power, Vol. 83, pp. 322–330, July 1961.

    Article  Google Scholar 

  53. Levine, Ph., Two-dimensional inlet conditions for a supersonic compressor with curved blades, Journal of Applied Mechanics, Vol. 24, No. 2, June 1957.

    Google Scholar 

  54. Swan, W.C., A practical method of predicting transonic compressor performance, ASME Journal for Engineering and Power, Vol. 83, pp. 322–330, July 1961.

    Article  Google Scholar 

  55. Schwenk, F.C., Lewis, G.W., Hartmann, M.J., A preliminary analysis of the magnitude of shock losses in transonic compressors NACA RM #57A30 March 1957.

    Google Scholar 

  56. Levine, Ph., Two-dimensional inlet conditions for a supersonic compressor with curved blades, Journal of Applied Mechanics, Vol. 24, No. 2, June 1957.

    Google Scholar 

  57. Gostelow, J.P., Krabacher, K.W., Smith, L.H., Performance comparisons of the high Mach number compressor rotor blading NASA Washington 1968, NASA CR-1256.

    Google Scholar 

  58. Krabacher, K.W., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part IV, Performance of rotor 2D. NASA CR-54584, 1967.

    Google Scholar 

  59. Krabacher, K.W., Gostelow, J.P., Single stage experimental evaluation of high Mach number compressor rotor blading, Part V, Performance of Rotor 2B. NASA CR-54585, 1967.

    Google Scholar 

  60. Grieb, H., Schill, G., Gumucio, R., 1975. A semi-empirical method for the determination of multistage axial compressor efficiency. ASME-Paper 75-GT-11.

    Google Scholar 

  61. Carter, A.D.S., 1948. Three-Dimensional flow theories for axial compressors and turbines, Proceedings of the Institution of Mechanical Engineers, Vol. 159, p. 255.

    Google Scholar 

  62. Hirsch, Ch., 1978. Axial compressor performance prediction, survey of deviation and loss correlations AGARD PEP Working Group 12.

    Google Scholar 

  63. Swan, W.C., A practical method of predicting transonic compressor performance, ASME Journal for Engineering and Power, Vol. 83, pp. 322–330, July 1961.

    Article  Google Scholar 

  64. Schobeiri, M.T., Verlustkorrelationen für transsonische Kompressoren, BBC-Studie, TN-78/20, 1987.

    Google Scholar 

  65. Jansen, W., Moffat, W.C., 1967. The off-design analysis of axial flow compressors ASME, Journal of Eng for Power, pp. 453–462.

    Google Scholar 

  66. Jansen, W., Moffat, W.C., 1967. The off-design analysis of axial flow compressors ASME, Journal of Eng for Power, pp. 453–462.

    Google Scholar 

  67. Davis, W. R., 1971. A computer program for the analysis and design of turbomachinery, Carleton University Report No. ME/A.

    Google Scholar 

  68. Jansen, W., Moffat, W.C., 1967. The off-design analysis of axial flow compressors ASME, Journal of Eng for Power, pp. 453–462.

    Google Scholar 

  69. Davis, W. R., 1971. A computer program for the analysis and design of turbomachinery, Carleton University Report No. ME/A.

    Google Scholar 

  70. Dettmering, W., Grahl, K., 1971. Machzahleinfluß auf Verdichter-charakteristik, ZFW 19.

    Google Scholar 

  71. Fottner, L., 1979. Answer to questionnaire on compressor loss and deviation angle correlations, AGARD-PEP,1979. Working Group 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schobeiri, M. (2005). Modeling the Compressor Component, Design and Off-Design. In: Turbomachinery Flow Physics and Dynamic Performance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-26591-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-26591-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22368-9

  • Online ISBN: 978-3-540-26591-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics