Skip to main content

Survival Analysis

  • Chapter

Abstract

The term survival analysis originally referred to statistical study of the time to death of a group of individuals. From a mathematical perspective it is irrelevant whether one is studying time until death or time to any other event and so the term has come to be applied to methods for analysing “time to event data”. Although often not explicitly stated, we are always interested in the time between two events. For instance one might be studying the age of death (the time from birth until death), survival of cancer patients (the time fromdiagnosis until death), or the incubation time of a virus (time from infection until the development of symptomatic disease). Survival analysis is more complicated than the analysis of other measurements because one often has only partial information regarding the survival time for some individuals. The most common formof partial information arises when a study is stopped before all participants have died. At that point we might know that Mrs Patel survived for at least 3.7 years, but have no idea whether she will die a week later or 25 years later. The observation on Mrs Patel is said to be (right) censored at 3.7 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalen OO (1980) A model for nonparametric regression analysis of counting processes. In: Klonecki W, Kozek A, Rosinski J (eds) Mathematical statistics and probability theory. Lecture Notes in Statistics 2. Springer, New York, pp 1–25

    Google Scholar 

  • Aalen OO (1989) A linear regression model for the analysis of life times. Stat Med 8:907–925

    Article  Google Scholar 

  • Aalen OO (1993) Further results on the non-parametric linear regression model in survival analysis. Stat Med 12:1569–1588

    Article  Google Scholar 

  • Andersen PK, Borch-Johnsen K, Deckert T, Green A., Hougaard P, Keiding N, Kreiner S (1985) A Cox regression model for the relative mortality and its application to diabetes mellitus survival data. Biometrics 41:921–932

    Article  MATH  Google Scholar 

  • Barlow RE, Bartholomew DJ, Bremner JM, Brunk HD (1972) Statistical inference under order restrictions. Wiley, Chichester

    MATH  Google Scholar 

  • Borgan O, Langholz B (1993) Nonparametric estimation of relative mortality from nested case-control studies. Biometrics 49:593–602

    Article  MATH  Google Scholar 

  • Borgan O, Olsen EF (1999) The efficiency of simple and counter-matched nested case-control sampling. Scand J Stat 26(4):493–509

    Article  MATH  MathSciNet  Google Scholar 

  • Brenner H (2002) Long-term survival rates of cancer patients achieved by the end of the 20th century: a period analysis. Lancet 360:1131–1135

    Article  Google Scholar 

  • Brenner H, Gefeller O (1996) An alternative method to monitor cancer patient survival. Cancer 78:2004–2010

    Article  Google Scholar 

  • Breslow NE, Day NE (1980) Statistical methods in cancer research. Volume I — The analysis of case-control studies. IARC Scientific Publications No. 32. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Breslow NE, Day NE (1987) Statistical methods in cancer research. Volume II — The design and analysis of cohort studies. IARC Scientific Publications No. 82. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Breslow NE, Lubin JH, Marek P, Langholz B (1983) Multiplicative models and cohort analysis. J Am Stat Assoc 78:1–12

    Article  MATH  Google Scholar 

  • Chen K, Lo S-H (1999) Case-cohort and case-control analysis with Cox’s model. Biometrika 86:755–764

    Article  MATH  MathSciNet  Google Scholar 

  • Chen Y-H (2002) Cox regression in cohort studies with validation sampling. Journal of the J Roy Statist Soc, Series B 64:51–62

    Article  MATH  Google Scholar 

  • Christensen E, Neuberger J, Crowe J, Altman DG, Popper H, Portmann B, Doniach D, Ranek L, Tygstrup N, Williams R (1985) Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Final results of an international trial. Gastroenterology 89:1084–1091

    Google Scholar 

  • Cox DR (1972) Regression models and life tables (with discussion). J Roy Statist Soc, Series B 34:187–220

    MATH  Google Scholar 

  • Cuzick J, Sasieni P, Evans S (1992) Ingested arsenic, keratoses, and bladder cancer. Am J Epidemiol 136:417–421

    Google Scholar 

  • Cuzick J, Stewart H, Rutqvist L, Houghton J, Edwards R, Redmond C, Peto R, Baum M, Fisher B, Host H (1994) Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol. 12(3):447–453

    Google Scholar 

  • Day NE (1976) A new measure of age standardized incidence, the cumulative rate. In: Waterhouse JAH, Muir CS, Correa P, Powell J (eds) Cancer incidence in five continents, Volume III. IARC Scientific Publications No. 15. International Agency for Research on Cancer, Lyon, pp 443–452

    Google Scholar 

  • De Gruttola V, Lagakos SW (1989) Analysis of doubly-censored survival data, with application to AIDS. Biometrics 45:1–11

    Article  MATH  MathSciNet  Google Scholar 

  • Ederer F, Axtell LM, Cutler SJ (1961) The relative survival rate: a statistical methodology. Natl Cancer Inst Monogr 6:101–121

    Google Scholar 

  • Gail MH, Byar DP (1986) Variance calculation for direct adjusted survival curves with application to testing for no treatment effect. Biom J 28:587–599

    Article  MATH  Google Scholar 

  • Galimberti S, Sasieni P, Valsecchi MG (2002) A weighted Kaplan-Meier estimator for matched data with application to the comparison of chemotherapy and bone-marrow transplant in leukaemia. Stat Med 21(24):3847–3864

    Article  Google Scholar 

  • Goetghebeur E, Ryan L (2000) Semiparametric regression analysis of intervalcensored data. Biometrics 56:1139–1144

    Article  MATH  MathSciNet  Google Scholar 

  • Gore SM, Pocock SJ, Kerr GR (1984) Regression models and non-proportional hazards in the analysis of breast cancer survival. Applied Statistics 33:176–195

    Article  Google Scholar 

  • Greenwood M (1926) A report on the natural duration of cancer. Reports on Public Health and Medical Subjects. 33:1–26. H. M. Stationery Office, London

    Google Scholar 

  • Groeneboom P, Wellner J (1992) Information bounds and nonparametric Maximum Likelihood estimation. In: DMV Seminar, Band 19. Birkhauser, New York

    Google Scholar 

  • Hakulinen T (1982) Cancer survival corrected for heterogeneity in patient withdrawal. Biometrics 38(4):933–942

    Article  Google Scholar 

  • Hall WJ, Wellner JA (1980) Confidence bands for a survival curve from censored data. Biometrika 67:133–143

    Article  MATH  MathSciNet  Google Scholar 

  • Halley E (1693) An estimate of the degrees of the mortality of mankind, drawn from curious tables of the births and funerals at the city of Breslaw; with an attempt to ascertain the price of annuities upon lives. Philosophical Transactions of the Royal Society of London 17:596–610

    Article  Google Scholar 

  • Henderson R, Milner A (1991) Aalen plots under proportional hazards. Applied Statistics 40:401–409

    Article  MATH  Google Scholar 

  • Hosmer DW, Lemshow S (1999) Applied survival analysis: Regression modeling of time to event data. Wiley: New York

    MATH  Google Scholar 

  • Huang J (1996) Efficient estimation for the Cox model with interval censoring. Annals of Statistics 24:540–568

    Article  MATH  MathSciNet  Google Scholar 

  • Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1:221–233. University of California Press, Berkeley CA

    Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 58:457–481

    Article  MathSciNet  Google Scholar 

  • Keiding N (1987) The method of expected number of deaths, 1786–1886–1986. Int Stat Rev 55:1–20

    Article  MATH  MathSciNet  Google Scholar 

  • Keiding N (1990) Statistical inference in the Lexis diagram. Phil Trans Roy Soc London A 332:487–509

    Article  MATH  MathSciNet  Google Scholar 

  • Keiding N (1991) Age-specific incidence and prevalence: A statistical perspective (with discussion). J Roy Statist Soc, Series A 154:371–412

    MATH  MathSciNet  Google Scholar 

  • Keiding S, Ericzon BG, Eriksson S, Flatmark A, Höckerstedt K, Isoniemi H, Karlberg I, Keiding N, Olsson R, Samela K, Schrumpf E, Söderman C (1990) Survival after liver transplantation of patients with primary biliary cirrhosis in the Nordic countries. Comparison with expected survival in another series of transplantations and in an international trial of medical treatment. Scand J Gastroenterol 25:11–18

    Google Scholar 

  • Kooperberg C, Clarkson DB (1997) Hazard regression with interval-censored data. Biometrics 53:1485–1494

    Article  MATH  Google Scholar 

  • Langholz B, Borgan O (1995) Counter matching: A stratified nested case-control sampling method. Biometrika 82:69–79

    Article  MATH  Google Scholar 

  • Langholz B, Goldstein L (1996) Risk set sampling in epidemiologic cohort studies. Statistical Science 11:35–53

    Article  Google Scholar 

  • Leung KM, Elashoff RM (1996) A three-state disease model with intervalcensored data: Estimation and applications to AIDS and cancer. Lifetime Data Analysis 2:175–194

    Article  MATH  Google Scholar 

  • Li L, Pu Z (2003) Rank estimation of log-linear regression with interval-censored data. Lifetime Data Analysis 9:57–70

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY, Oakes D, Ying Z (1998) Additive hazards regression with current status data. Biometrika 85:289–298

    Article  MATH  MathSciNet  Google Scholar 

  • Makuch RW (1982) Adjusted survival curve estimation using covariates. J Chronic Dis 35:437–443

    Article  Google Scholar 

  • Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50:163–170

    Google Scholar 

  • Martinussen T, Scheike TH (2002) Efficient estimation in additive hazards regression with current status data. Biometrika 89:649–658

    Article  MATH  MathSciNet  Google Scholar 

  • Marubini E, Valsecchi MG (1995) Analysing survival data from clinical trials and observational studies. Wiley, Chichester

    MATH  Google Scholar 

  • Mau J (1986) On a graphical method for the detection of time-dependent effects of covariates in survival data. Applied Statistics 35:245–255

    Article  MathSciNet  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalised linear models, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • McKeague IW, Sasieni PD (1994) A partly parametric additive risk model. Biometrika 81:501–514

    Article  MATH  MathSciNet  Google Scholar 

  • Odell PM, Anderson KM, D’Agostino RB (1992) Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model. Biometrics 48:951–991

    Article  Google Scholar 

  • Peto R, Peto J (1972) Asymptotically efficient rank invariant test procedures (with discussion). J Roy Statist Soc, Series A 135:185–206

    Article  MathSciNet  Google Scholar 

  • Prentice RL (1986a) On the design of synthetic case-control studies. Biometrics 42:301–310

    Article  MATH  Google Scholar 

  • Prentice RL (1986b) A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73:1–11

    Article  MATH  MathSciNet  Google Scholar 

  • Rabinowitz D, Betensky RA, Tsiatis AA (2000) Using conditional logistic regression to fit proportional odds models to interval censored data. Biometrics 56:511–518

    Article  MATH  Google Scholar 

  • Sasieni PD (1996) Proportional excess hazards. Biometrika 83:127–141

    Article  MATH  MathSciNet  Google Scholar 

  • Sasieni PD, Adams J (1999) Standardized lifetime risk. Am J Epidemiol 149:869–875

    Google Scholar 

  • Sasieni PD, Adams J (2000) Analysis of cervical cancer mortality and incidence data from England and Wales: evidence of a beneficial effect of screening. J Roy Statist Soc, Series A 163:191–209

    Google Scholar 

  • Sasieni PD, Adams J, Cuzick J (2002) Avoidance of premature death: a new definition for the proportion cured. J Cancer Epidemiol Prev 7:165–171

    Google Scholar 

  • Self SG, Prentice RL (1988) Asymptotic distribution theory and efficiency results for case-cohort studies. Annals of Statistics 11:804–812

    MathSciNet  Google Scholar 

  • Therneau TM, Grambsch PM (2000) Modeling survival data: Extending the Cox model. Springer, New York

    MATH  Google Scholar 

  • Thomas DC (1977) Addendum to: methods of cohort analysis: Appraisal by application to asbestos mining. By FDK Liddel, JC McDonals and DC Thomas. J Roy Statist Soc, Series A 140:469–491

    Article  Google Scholar 

  • Williamson JM, Satten GA, Hanson JA, Weinstock H, Datta S (2001) Analysis of dynamic cohort data. Am J Epidemiol 154:366–372

    Article  Google Scholar 

  • Winnett A, Sasieni P (2002) Adjusted Nelson-Aalen estimates with retrospective matching. Journal of the American Statistical Association 97:245–256

    Article  MATH  MathSciNet  Google Scholar 

  • Zahl P-H (1996) A linear non-parametric regression model for the excess intensity. Scandinavian Journal of Statistics 23:353–364

    MATH  Google Scholar 

  • Zhang Y, Liu W, Zhan Y (2001) A nonparametric two-sample test of the failure function with interval censoring case 2. Biometrika 88:677–686

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sasieni, P.D. (2005). Survival Analysis. In: Ahrens, W., Pigeot, I. (eds) Handbook of Epidemiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-26577-1_18

Download citation

Publish with us

Policies and ethics