Skip to main content

Modeling the Molecular Network Controlling Adhesion Between Human Endothelial Cells: Inference and Simulation Using Constraint Logic Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3082))

Abstract

Cell-cell adhesion plays a critical role in the formation of tissues and organs. Adhesion between endothelial cells is also involved in the control of leukocyte migration across the endothelium of blood vessels. The most important players in this process are probably identified and the overall organization of the biochemical network can be drawn, but knowledge about connectivity is still incomplete, and the numerical values of kinetic parameters are unknown. This calls for qualitative modeling methods. Our aim in this paper is twofold: (i) to integrate in a unified model the biochemical network and the genetic circuitry. For this purpose we transform our system into a system of piecewise linear differential equations and then use Thomas theory of discrete networks. (ii) to show how constraints can be used to infer ranges of parameter values from observations and, with the same model, perform qualitative simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bockmayr, A., Courtois, A.: Using Hybrid Concurrent Constraint Programming to Model Dynamic Biological Systems. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 85–99. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Chabrier, N., Fages, F.: Symbolic Model Checking of Biochemical Networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Cohen, J.: Approaches for simulating and modeling cell regulation: search for a unified view using constraints. Linköping Electronic Articles in Computer and Information Science 3(7) (2001)

    Google Scholar 

  4. Colmerauer, A.: Prolog – Constraints Inside, Manuel de Prolog, PROLOGIA, Case 919, 13288 Marseille cedex 09, France (1996)

    Google Scholar 

  5. Delzanno, G., Podelski, A.: Model Checking in CLP. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Devloo, V., Hansen, P., Labbé, M.: Identification of All Steady States in Large Biological Systems by Logical Analysis. Bulletin of Mathematical Biology 65, 1025–1051 (2003)

    Article  MATH  Google Scholar 

  7. Glass, L., Kauffman, S.A.: Co-operative components, spatial localization and oscillatory cellular dynamics. J. Theor. Biol. 34, 219–237 (1972)

    Article  Google Scholar 

  8. Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)

    Article  Google Scholar 

  9. Gulino, D., Delachanal, E., Concord, E., Genoux, Y., Morand, B., Valiron, M.O., Sulpice, E., Scaife, R., Alemany, M., Vernet, T.: Alteration of Endothelial Cell Monolayer Integrity Triggers Resynthesis of Vascular Endothelium Cadherin. The Journal of Biological Chemistry 273, 29786–29793 (1998)

    Article  Google Scholar 

  10. Hermant, B., Bibert, S., Concord, E., Dublet, B., Weidenhaupt, M., Vernet, T., Gulino-Debrac, D.: Identification of Proteases Involved in the Proteolysis of Vascular Endothelium Cadherin during Neutrophil Transmigration. The Journal of Biological Chemistry 278, 14002–14012 (2003)

    Article  Google Scholar 

  11. Hickey, T.J., Wittenberg, D.K.: Rigorous Modeling of Hybrid Systems using Interval Arithmetic Constraints. In: Technical Report CS-03-241, Computer Science Departement, Brandeis University (2003)

    Google Scholar 

  12. Hordijk, P.L., Anthony, E., Mul, F.P., Rientsma, R., Oomen, L.C., Roos, D.: Vascular-Endothelial-Cadherin Modulates Endothelial Monolayer Permeability. J. Cell Sci. 112, 1915–1923 (1999)

    Google Scholar 

  13. de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Hybrid modeling and simulation of genetic regulatory networks: A qualitative approach. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 267–282. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Lampugnani, M.G., Corada, M., Caveda, L., Breviario, F., Ayalon, O., Geiger, B., Dejana, E.: The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, β-catenin, and α-catenin with vascular endothelial cadherin (VE-cadherin). J. Cell Biol. 129, 203–217 (1995)

    Article  Google Scholar 

  15. Lampugnani, M.G., Resnati, M., Raiteri, M., Pigott, R., Pisacane, A., Houen, G., Ruco, L.P., Dejana, E.: A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J. Cell Biol. 118, 1511–1522 (1992)

    Article  Google Scholar 

  16. Legrand, P., Bibert, S., Jaquinod, M., Ebel, C., Hewatt, E., Vincent, F., Vanbelle, C., Concord, E., Vernet, T., Gulino, D.: Self-assembly of the vascular endothelial cadherin ectodomain in a Ca2 + -dependent hexameric structure. Journal of Biological Chemistry 276, 3581–3588 (2001)

    Article  Google Scholar 

  17. Murray, J.D.: Mathematical Biology. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  18. Peres, S., Comet, J.-P.: Contribution of Computational Tree Logic to Biological Regulatory Networks: Example from Pseudomonas Aeruginosa. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 47–56. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Shapiro, B.E., Levchenko, A., Mjolsness, E.: Automatic model generation for signal transduction with applications to MAPK pathway. In: Kitano, H. (ed.) Foundations of Systems Biology. MIT Press, Cambridge (2002)

    Google Scholar 

  20. Snoussi, E.H., Thomas, R.: Logical Identification of All Steady States: The Concept of Feedback Loop Characteristic States. Bulletin of Mathematical Biology 55, 973–991 (1993)

    Article  MATH  Google Scholar 

  21. Thieffry, D., Colet, M., Thomas, R.: Formalisation of Regulatory Networks: a Logical Method and Its Automation. Math. Modelling and Sci. Computing 2, 144–151 (1993)

    MATH  Google Scholar 

  22. Thomas, R., Kaufman, M.: Multistationarity, the Basis of Cell Differentiation and Memory. II. Logical Analysis of Regulatory Networks in Term of Feedback Circuits. Chaos 11, 180–195 (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fanchon, E., Corblin, F., Trilling, L., Hermant, B., Gulino, D. (2005). Modeling the Molecular Network Controlling Adhesion Between Human Endothelial Cells: Inference and Simulation Using Constraint Logic Programming. In: Danos, V., Schachter, V. (eds) Computational Methods in Systems Biology. CMSB 2004. Lecture Notes in Computer Science(), vol 3082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25974-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25974-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25375-4

  • Online ISBN: 978-3-540-25974-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics