Advertisement

Analytical Design of 2-D Narrow Bandstop FIR Filters

  • Pavel Zahradnik
  • Miroslav Vlček
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)

Abstract

Novel approach in the design of 2-D extremely narrow bandstop FIR filters is presented. The completely analytical design method is based on the 1-D optimal bandstop FIR filters. The 1-D FIR optimal bandstop filters are based on Zolotarev polynomials. Closed form formulas for the design of the filters are presented. One example demonstrates the design procedure. One application of the 2-D FIR filter with extremely narrow stop bands is presented.

Keywords

Impulse Response Chebyshev Polynomial Closed Form Formula Amplitude Frequency Response Notch Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Astola, J., Kuosmanen, P.: Fundamentals of Nonlinear Digital Filtering. CRC Press, Boca Raton (1997)Google Scholar
  2. 2.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Function. Dover Publication, New York Inc. (1972)Google Scholar
  3. 3.
    Achieser, N.I.: Über einige Funktionen, die in gegebenen Intervallen am wenigsten von Null abweichen. Bull. de la Soc. Phys. Math. de Kazan 3, 1–69 (1928)Google Scholar
  4. 4.
    Fischer, V., Drutarovsky, M., Lukac, R.: Implementation of 3-D Adaptive LUM Smoother in Reconfigurable Hardware. In: Glesner, M., Zipf, P., Renovell, M. (eds.) FPL 2002. LNCS, vol. 2438, pp. 720–729. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Gonzales, R.C., Woods, R.E.: Digital Image processing. Wiley Interscience, New York (2001)Google Scholar
  6. 6.
    Lawden, D.F.: Elliptic Functions and Applications. Springer, New York Inc. (1989)zbMATHGoogle Scholar
  7. 7.
    Lukac, R.: Binary LUM Smoothing. IEEE Signal Processing Letters 9(12), 400–403 (2002)CrossRefGoogle Scholar
  8. 8.
    Lukac, R.: Adaptive Vector Median Filtering. Pattern Recognition Letters 24(12), 1889–1899 (2003)CrossRefGoogle Scholar
  9. 9.
    Lukac, R.: Simplified Boolean LUM Smoothers. In: Proceedings of the 4th EURASIPIEEE Region 8 International Symposium on Video/Image Processing and Multimedia Communications VIPromCom-2002, Zadar, Croatia, June 16-19, pp. 159–162 (2002)Google Scholar
  10. 10.
    Lukac, R.: The Way How to Design and Implement an Adaptive Method Based on Center-Weighted Medians. In: Proceedings of the IEEE Scientific Workshop Signal Processing 2002, Poznan, Poland, October 11, pp. 9–14 (2002)Google Scholar
  11. 11.
    Pitas, I., Venetsanopoulos, A.N.: Nonlinear Digital Filters: Priciples and Applications. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  12. 12.
    Pratt, W.K., Venetsanopoulos, A.N.: Digital Image processing. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  13. 13.
    Vlček, M., Jireš, L.: Fast Design Algorithms for FIR Notch Filters. In: Proc. of IEEE International Symposium on Circuits and Systems ISCAS 1994, London, vol. 2, pp. 297–300 (1994)Google Scholar
  14. 14.
    Vlček, M., Unbehauen, R.: Zolotarev Polynomials and Optimal FIR Filters. IEEE Transactions on Signal Processing 47(3), 717–730 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Vlček, M., Zahradnik, P., Unbehauen, R.: Analytic Design of FIR Filters. IEEE Transactions on Signal Processing 48, 2705–2709 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Pavel Zahradnik
    • 1
  • Miroslav Vlček
    • 2
  1. 1.Department of Telecommunications EngineeringCzech Technical University PraguePrahaCzech Republic
  2. 2.Department of Applied MathematicsCzech Technical University PraguePrahaCzech Republic

Personalised recommendations