Segmentation of Fundus Eye Images Using Methods of Mathematical Morphology for Glaucoma Diagnosis

  • Katarzyna Sta̧por
  • Adam Świtonski
  • Radim Chrastek
  • Georg Michelson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)


In this paper the new method for automatic segmentation of cup and optic disc in fundus eye images taken from classical fundus camera is proposed. The proposed method is fully based on techniques from mathematical morphology. Detection of cup region makes use of watershed transformation with markers imposed, while optic disk is extracted based on geodesic reconstruction by dilation. The obtained results are encouraging.


Optic Disc Automatic Segmentation Mathematical Morphology Closing Operation Watershed Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beucher, S., Meyer, F.: The morphological approach to image segmentation: the watershed transformation. In: Dougherty, E.R. (ed.) Mathematical morphology in image processing, pp. 433–481 (1993)Google Scholar
  2. 2.
    Goh, K.G., et al.: ADRIS: an Automatic Diabetic Retinal Image Screening system. In: Cios, K.J. (ed.) Medical Data Mining and Knowledge Discovery, pp. 181–210. Springer, New York (2000)Google Scholar
  3. 3.
    Gonzalez, R.C., Woods, R.E.: Digital image processing. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  4. 4.
    Jonas, J., et al.: Ophthalmoscopic evalutation of the optic nerve head. Survey of Ophthalmology 43(4) (January - February 1999)Google Scholar
  5. 5.
    Kanski, J., et al.: Glaucoma: a color manual of diagnosis and treatment. Butterworth-Heinemann, Butterworths (1996)Google Scholar
  6. 6.
    Morris, D.T., Donnison, C.: Identifying the Neuroretinal Rim Boundary Using Dynamic Contours. Image and Vision Computing 17, 169–174 (1999)CrossRefGoogle Scholar
  7. 7.
    Osareh, A., et al.: Classification and localisation of diabetic related eye disease. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 502–516. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Pinz, A., et al.: Mapping the human retina. IEEE Trans. Medical Imaging 1, 210–215 (1998)Google Scholar
  9. 9.
    soi Soille, P.: Morphological Image analysis: principles and applications. Springer, Berlin (1999)Google Scholar
  10. 10.
    Tamura, S., Okamoto, Y.: Zero-crossing interval correction in tracing eye-fundus blood vessels. Pattern Recognition 21(3), 227–233 (1988)CrossRefGoogle Scholar
  11. 11.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. On Image processing 2(2), 176–201 (1993)CrossRefGoogle Scholar
  12. 12.
    Walter, T., Klein, J.: Segmentation of color fundus images of the human retina: detection of the optic disc and the vascular tree using morphological techniques. In: Proc. 2nd Int. Symp. Medical Data Analysis, pp. 282–287 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Katarzyna Sta̧por
    • 1
  • Adam Świtonski
    • 1
  • Radim Chrastek
    • 2
  • Georg Michelson
    • 3
  1. 1.Institute of Computer ScienceSilesian University of TechnologyGliwicePoland
  2. 2.Chair for Pattern RecognitionFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  3. 3.Department of OphthalmologyFriedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations