Computing Theta-Stable Parabolic Subalgebras Using LiE

  • Alfred G. Noël
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)


This paper describes an algorithm for computing representatives of conjugacy classes of θ-stable parabolic subalgebras of a semisimple complex Lie algebra g c| relative to any of its non-compact real forms g of inner type. These subalgebras are important for studying representations of g.


Conjugacy Class Borel Subalgebra Parabolic Subalgebra Borel Subalgebras Parabolic Subalgebras 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vogan Jr., D.: The algebraic structure of the representation of semisimple Lie groups I. Annals of Math. 109, 1–60 (1979)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: LiE A package for Lie Group Computations. Computer Algebra Nederland, Amsterdam (1992)Google Scholar
  3. 3.
    Noël, A.G.: Appendix to “Richardson Orbits for Real Classical Groups” by Peter E. Trapa (Counterexamples in F4). To appear in Journal of AlgebraGoogle Scholar
  4. 4.
    Noël, A.G.: Some remarks on Richardson Orbits in Complex Symmetric Spaces (preprint)Google Scholar
  5. 5.
    Noël, A.G.: Computing maximal tori using LiE and Mathematica. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 728–736. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Reingold, E.M., Nievergelt, J., Deo, N.: Combinatorial Algorithms Theory and Practice. Prentice-Hall, Englewood Cliffs (1977)Google Scholar
  7. 7.
    Knapp, A.W.: Lie Groups Beyond and introduction, 2nd edn. Birkhaüser Progress in Mathematics, vol. 140 (2002)Google Scholar
  8. 8.
    Trapa, P.E.: Richardson Orbits for Real Classical Groups. To appear in Journal of AlgebraGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alfred G. Noël
    • 1
    • 2
  1. 1.Department of MathematicsThe University of MassachusettsBostonUSA
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations