Design of Interactive Environment for Numerically Intensive Parallel Linear Algebra Calculations

  • Piotr Luszczek
  • Jack Dongarra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)


We focus our attention in this article on how to provide parallel numerical linear algebra capabilities to Problem Solving Environments. Instead of describing a particular implementation, we present an exploration of the design space and consequences of particular design choices. We also show tests of a prototype implementation of our ideas with emphasis on the performance perceived by the end user.


Interactive Environment Host Environment View Semantic Network Address Translation Numerical Linear Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Venners, B.: Programming at Python speed: A conversation with Guido van Rossum (2003), Available at
  2. 2.
    Dubois, P., Hinsen, K., Hugunin, J.: Numerical Python. Computers in Physics 10 (1996)Google Scholar
  3. 3.
    Mathworks Inc.: MATLAB 6 User’s Guide (2001)Google Scholar
  4. 4.
    Gomez, C. (ed.): Engineering and Scientific Computing with Scilab. Birkhäuser, Boston (1999)zbMATHGoogle Scholar
  5. 5.
    Gumley, L.: Practical IDL Programming, 1st edn. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  6. 6.
    Schrüfer, E.: EXCALC – a package for calculations in modern differential geometry. In: Shirkov, D., Rostovtsev, V., Gerdt, V. (eds.) Proc. IV Int. Conf. Comp. Algebra in Physical Research, Dubna, U.S.S.R., pp. 71–80. World Scientific, Singapore (1990)Google Scholar
  7. 7.
    Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer. Addison-Wesley, Reading (1988)zbMATHGoogle Scholar
  8. 8.
    Char, B., et al.: Maple V, Language Reference Manual. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  9. 9.
    Rand, R.: Computer algebra in applied mathematics: an introduction to MACSYMA. Research notes in mathematics, vol. 94. Pitman Publishing Ltd., London (1984)zbMATHGoogle Scholar
  10. 10.
    de Souza, P., Fateman, R., Moses, J., Yapp, C.: The Maxima book (2003)Google Scholar
  11. 11.
    Moler, C.: Why there isn’t parallel Matlab. Mathworks Newsletter (1995)Google Scholar
  12. 12.
    Choy, L., Edelman, A.: MATLAB*P 2.0: A unified parallel MATLAB. Technical report, Massachusetts Institute of Technology (2003)Google Scholar
  13. 13.
    Choy, L.: MATLAB*P 2.0: Interactive supercomputing made practical. Master’s thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2002)Google Scholar
  14. 14.
    Husbands, P.: Interactive Supercomputing. PhD thesis, Department of Electrical Engineering and Comp. Science, Massachusetts Institute of Technology (1999)Google Scholar
  15. 15.
    Chen, Z., Dongarra, J., Luszczek, P., Roche, K.: Self-adapting software for numerical linear algebra and LAPACK for clusters. Parallel Computing 29, 1723–1743 (2003)CrossRefGoogle Scholar
  16. 16.
    Dongarra, J., Eijkhout, V.: Self adapting numerical algorithms for next generation applications. International Journal of High Performance Computing Applications 17, 125–132 (2003) ISSN 1094-3420CrossRefGoogle Scholar
  17. 17.
    Norris, B.: An environment for interactive parallel numerical computing. Technical Report UIUCDCS-R-99-2123, University of Illinois, Urbana, Illinois (1999)Google Scholar
  18. 18.
    IEEE 754: Standard for binary floating point arithmetic. Technical report, Institute of Electrical and Electronics Engineers (1985)Google Scholar
  19. 19.
    Whaley, R., Petitet, A., Dongarra, J.: Automated empirical optimizations of software and the ATLAS project. Parallel Computing 27, 3–35 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Dongarra, J., Whaley, C.: Automatically tuned linear algebra software (ATLAS). In: Proceedings of SC 1998 Conference, IEEE, Los Alamitos (1998)Google Scholar
  21. 21.
    Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK User’s Guide, 3rd edn., Philadelphia. Society for Industrial and Applied Mathematics (1999)Google Scholar
  22. 22.
    Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)Google Scholar
  23. 23.
    Agrawal, S., Dongarra, J., Seymour, K., Vadhiyar, S.: NetSolve: Past, present, and future – a look at a grid enabled server. In: Berman, F., Fox, G., Hey, A. (eds.) Grid Computing: Making the Global Infrastructure a Reality, Wiley Publisher, Chichester (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Piotr Luszczek
    • 1
  • Jack Dongarra
    • 1
    • 2
  1. 1.Innovative Computing Laboratory, Computer Science DepartmentUniversity of Tennessee Knoxville 
  2. 2.Computational Science and Mathematics DivisionOak Ridge National Laboratory 

Personalised recommendations