Real-Time Tree Rendering

  • I. Remolar
  • C. Rebollo
  • M. Chover
  • J. Ribelles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)


Interactive rendering of outdoor scenes is currently one of the most important challenges in computer graphics. This article presents a new method of real-time visualization of trees and plants that combines both multiresolution modeling techniques and the dynamic generation of impostors. In our method, trees and plants are represented by continuous view-dependent levels of detail. This enables us to represent many complex tree models with variable resolution. The number of primitives rendered per tree is reduced according to their importance in the scene without loss of leafiness. Furthermore, trees are visualized using dynamic impostors that take advantage of the frame-to-frame coherence inherent in tree-dimensional scenes. The impostors avoid the need to redraw all the geometry of the scene continuously. This method permits visualization of outdoor scenes with a high number of trees in interactive applications such as computer games or virtual reality, adapting the level of detail to the capability of graphic systems.


Interactive Visualization Outdoor Scene IEEE Visualization Interactive Rendering Multiresolution Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Lintermann, B., Deussen, O.: Interactive modeling of plants. IEEE Computer Graphics and Applications 19(1) (1999)Google Scholar
  3. 3.
    Ribelles, J., López, A., Belmonte, Ó., Remolar, I., Chover, M.: Multiresolution Modeling of Arbitrary Polygonal Surfaces: A Characterization. Computers & Graphics 26(3), 449–462 (2002)CrossRefGoogle Scholar
  4. 4.
    Max, N., Ohsaki, K.: Rendering trees from precomputed Z-buffer views. In: Eurographics Workshop on Rendering 1996, pp. 165–174 (1996)Google Scholar
  5. 5.
    Jakulin, A.: Interactive Vegetation Rendering with Slicing and Blending. In: Eurographics 2000, Short presentations (2000)Google Scholar
  6. 6.
    Lluch, J., Camahort, E., Vivó, R.: An Image-Based Multiresolution Model for Interactive Foliage Rendering. Journal of WSCG04 12(3), 507–514 (2004)Google Scholar
  7. 7.
    Weber, J., Penn, J.: Creation and rendering of realistic trees. In: Proc of SIGGRAPH 1995, pp. 119–128 (1995)Google Scholar
  8. 8.
    Stamminger, M., Drettakis, G.: Interactive sampling and rendering for complex and procedural geometry. In: Rendering Techniques 2001, Eurographics, pp. 151–162. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Deussen, O., Colditz, C., Stamminger, M., Dettrakis, G.: Interactive Visualization of Complex Plant Ecosystems. In: Proc. of the IEEE Visualization Conference (2002)Google Scholar
  10. 10.
    Schaufler, G.: Dynamically Generated Impostors. In: GI Workshop, Modeling - Virtual Worlds - Distribute Graphics 1995, pp. 129–136 (1995)Google Scholar
  11. 11.
    Harris, M.J., Lastra, A.: Real-Time Cloud Rendering. In: Eurographics 2001, vol. 20(3) (2001)Google Scholar
  12. 12.
    Remolar, I., Chover, M., Belmonte, O., Ribelles, J., Rebollo, C.: Geometric Simplification of Foliage. In: Eurographics 2002 Short Presentations, pp. 397–404 (2002)Google Scholar
  13. 13.
    Hoppe, H.: View-dependent refinement of progressive meshes. In: Proc. of SIGGRAPH 1997, pp. 189–198 (1997)Google Scholar
  14. 14.
    Xia, J., Varshney, A.: Dynamic view-dependent simplification for polygonal models. In: Proc. of IEEE Visualization 1996, pp. 327–334 (1996)Google Scholar
  15. 15.
    El-Sana, J., Varshney, A.: Generalized View-Dependent Simplification. In: Eurgographics 1999, pp. 131–137 (1999)Google Scholar
  16. 16.
    Luebke, D., Erikson, C.: View-Dependent Simplification of Arbitrary Polygonal Environments. In: Proc of SIGGRAPH 1997, pp. 202–210 (1997)Google Scholar
  17. 17.
    Reeves, W.T., Blau, R.: Approximate and probabilistic algorithms for shading and rendering structures particle systems. In: Computer Graphics, Proc. of SIGGRAPH 1985, vol. 19, pp. 313–322 (1985)Google Scholar
  18. 18.
    Weber, J., Penn, J.: Creation and rendering of realistic trees. In: Proc. of SIGGRAPH 1995, pp. 119–128 (1995)Google Scholar
  19. 19.
    Shade, J.W., Gortler, S.J., He, L., Szeliski, R.: Layered depth images. In: Proc. of SIGGRAPH 1998, pp. 231–242 (1998)Google Scholar
  20. 20.
    Ribelles, J., López, A., Belmonte, O., Remolar, I., Chover, M.: Variable Resolution Levelof- detail of Multiresolution Ordered Meshes. In: Proc. of 9th International Conference in Central Europe on Computer Graphics, vol. 2, pp. 299–306 (2001)Google Scholar
  21. 21.
    Remolar, I., Chover, M., Ribelles, J., Belmonte, O.: View-Dependent Multiresolution Model for Foliage. Journal of WSCG 2003 11(2), 370–378 (2003)Google Scholar
  22. 22.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proc of SIGGRAPH 1998, pp. 209–216 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • I. Remolar
    • 1
  • C. Rebollo
    • 1
  • M. Chover
    • 1
  • J. Ribelles
    • 1
  1. 1.Departamento de Lenguajes y Sistemas InformáticosUniversitat Jaume ICastellón

Personalised recommendations