Manifold Extraction in Surface Reconstruction

  • Michal Varnuška
  • Ivana Kolingerová
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)


Given a finite point set in R3 scanned by special devices from the object surface, a surface model interpolating or approximating the points set has to be obtained. We use for the reconstruction a CRUST algorithm by Nina Amenta, which selects surface triangles from the Delaunay tetrahedronization using information from the dual Voronoi diagram. This set of candidate surface triangles does not form a manifold, so the manifold extraction step is necessary. We present two improvements for this step, the former is limited to the used algorithm and the latter can be used with any other reconstruction algorithm.


Voronoi Diagram Surface Reconstruction Voronoi Cell Primary Surface Surface Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Algorri, M.E., Schmitt, F.: Surface reconstruction from unstructured 3D data. Computer Graphic Forum, 47–60 (1996)Google Scholar
  2. 2.
    Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: SIGGRAPH 1998, pp. 415–421 (1998)Google Scholar
  3. 3.
    Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discr. and Comput. Geometry 22(4), 481–504 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. In: 16th. Sympos. Comput. Geometry (2000)Google Scholar
  5. 5.
    Amenta, N., Choi, S., Kolluri, R.: The PowerCrust. In: Proc. of 6th ACM Sympos. on Solid Modeling (2001)Google Scholar
  6. 6.
    Bernardini, F., Bajaj, C.: A triangulation based. Sampling and reconstruction manifolds using a-shapes. In: 9th Canad. Conf. on Comput. Geometry, pp. 193–168 (1997)Google Scholar
  7. 7.
    Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball pivoting algorithm for surface reconstruction. IEEE Trans. on Vis. and Comp. Graphics 5(4) (1999)Google Scholar
  8. 8.
    Boissonat, J.D.: Geometric structures for three-dimensional shape representation. ACM Trans. Graphics 3, 266–286 (1984)CrossRefGoogle Scholar
  9. 9.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH, pp. 302–312 (1996)Google Scholar
  10. 10.
    Dey, T.K., Giesen, J., Hudson, J.: Delaunay Based Shape Reconstruction from Large Data. In: Proc. IEEE Sympos. in Parallel and Large Data Visualization and Graphics (2001)Google Scholar
  11. 11.
    Dey, T.K., Giesen, J., Leekha, N., Wenger, R.: Detecting boundaries for surface reconstruction using co-cones. Intl. J. Computer Graphics & CAD/CAM 16, 141–159 (2001)Google Scholar
  12. 12.
    Dey, T.K., Giesen, J.: Detecting undersampling in surface reconstruction. In: Proc. of 17th ACM Sympos. Comput. Geometry, pp. 257–263 (2001)Google Scholar
  13. 13.
    Dey, T.K., Goswami, S.: Tight Cocone: A water-tight surface reconstructor. In: Proc. 8th ACM Sympos. Solid Modeling application, pp. 127–134 (2003) [27]Google Scholar
  14. 14.
    Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graphics 13, 43–72 (1994)zbMATHCrossRefGoogle Scholar
  15. 15.
    Edelsbrunner, H.: Weighted alpha shapes. Technical report UIUCDCS-R92-1760, DCS University of Illinois at Urbana-Champaign, Urbana, Illinois (1992)Google Scholar
  16. 16.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Computer Graphics 26(2), 71–78 (1992)CrossRefGoogle Scholar
  17. 17.
    Müller, J.V., Breen, D.E., Lorenzem, W.E., O’Bara, R.M., Wozny, M.J.: Geometrically deformed models: A Method for extracting closed geometric models from volume data. In: Proc. SIGGRAPH, pp. 217–226 (1991)Google Scholar
  18. 18.
    Muraki, S.: Volumetric shape description of range data using ”Blobby model”. Comp. Graphics, 217–226 (1991)Google Scholar
  19. 19.
    Mencl, R., Müller, H.: Graph based surface reconstruction using structures in scattered point sets. In: Proc. CGI, pp. 298–311 (1998)Google Scholar
  20. 20.
    Varnuška, M., Kolingerová, I.: Improvements to surface reconstruction by CRUST algorithm. SCCG Budmerice, Slovakia, 101-109 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michal Varnuška
    • 1
  • Ivana Kolingerová
    • 1
  1. 1.Centre of Computer Graphics and Data Visualization Department of Computer Science and EngineeringUniversity of West BohemiaPilsenCzech Republic

Personalised recommendations