Using Constraints in Delaunay and Greedy Triangulation for Contour Lines Improvement

  • Ivana Kolingerová
  • Václav Strych
  • Václav Čada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)


Automatic computation of contour lines on a triangulation is a difficult problem because due to input data digitization and the type of triangulation used, some triangles can be a source of a strange behaviour of the contour lines. In this paper, we show what problems can appear in contour lines when Delaunay or greedy triangulations are used and how the contour lines can be improved using constraints in the triangulation. We improved contour lines by manually imposing constraints in a triangulation editing program. Automation of this process is a next step of our work.


Information System Operating System Input Data Computational Mathematic Contour Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anglada, M.V.: An Improved Incremental Algorithm for Constructing Restricted Delaunay Triangulations. Computers & Graphics 21, 215–223 (1997)CrossRefGoogle Scholar
  2. 2.
    Aurenhammer, F.: Voronoi Diagrams - a Survey of a Fundamental Geometric Data Structure. ACM Computing Survey 23(3), 345–405 (1991)CrossRefGoogle Scholar
  3. 3.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. In: Algorithms and Applications, Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Dickerson, M.T., Drysdale, R.L.S., McElfresh, S.A., Welzl, E.: Fast Greedy Triangulation Algorithms. In: Proc.10th Annual Symp. on Comp. Geom., pp. 211–220. ACM, New York (1994)CrossRefGoogle Scholar
  5. 5.
    Dyn, N., Levin, D., Rippa, S.: Data Dependent Triangulations for Piecewisse Linear Interpolation. IMA Journal of Numerical Analysis 10, 137–154 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kolingerová, I., Žalik, B.: Improvementsto Randomized Incremental Delaunay Insertion. Computers & Graphics 26, 477–490 (2002)CrossRefGoogle Scholar
  7. 7.
    Krcho, J.: Modelling of Georelief and ItsGeometrical Structure Using DTM: Positional and Numerical Accuracy (In Slovak), Georeliéf a geologické procesy, Q111, Bratislava, pp. 269-574 (2001)Google Scholar
  8. 8.
    Levcopoulos, C., Lingas, A.: Fast Algorithms for Greedy Triangulation. BIT 32, 280–296 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Okabe, A., Boots, B., Sugihara, K.: Spatial Tesselations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester (1992)zbMATHGoogle Scholar
  10. 10.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)Google Scholar
  11. 11.
    Sloan, S.W.: A Fast Algorithm for Generating Constrained Delaunay Triangulations. Computers & Structures 47, 441–450 (1993)zbMATHCrossRefGoogle Scholar
  12. 12.
    Su, P., Drysdale, R.L.S.: A Comparison of Sequential Delaunay Triangulation Algorithms. In: Proc. 11th Annual Symp. on Comp.Geom., pp. 61–70. ACM, New York (1995)CrossRefGoogle Scholar
  13. 13.
    Žalik, B., Kolingerová, I.: An Incremental Construction Algorithm for Delaunay Triangulation Using the Nearest-point Paradigm. Int. J. Geographical Information Science 17, 119–138 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ivana Kolingerová
    • 1
  • Václav Strych
    • 2
  • Václav Čada
    • 2
  1. 1.Department of Computer Science and Engineering 
  2. 2.Department of MathematicsUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations