Advertisement

Fuzzy-Rough Modus Ponens and Modus Tollens as a Basis for Approximate Reasoning

  • Masahiro Inuiguchi
  • Salvatore Greco
  • Roman Słowiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)

Abstract

We have proposed a fuzzy rough set approach without using any fuzzy logical connectives to extract gradual decision rules from decision tables. In this paper, we discuss the use of these gradual decision rules within modus ponens and modus tollens inference patterns. We discuss the difference and similarity between modus ponens and modus tollens and, moreover, we generalize them to formalize approximate reasoning based on the extracted gradual decision rules. We demonstrate that approximate reasoning can be performed by manipulation of modifier functions associated with the gradual decision rules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cattaneo, G.: Fuzzy Extension of Rough Sets Theory. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 275–282. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Dubois, D., Prade, H.: Gradual Inference Rules in Approximate Reasoning. Information Sciences 61, 103–122 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Putting Rough Sets and Fuzzy Sets Together. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)Google Scholar
  4. 4.
    Greco, S., Inuiguchi, M., Słowiński, R.: Rough Sets and Gradual Decision Rules. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 156–164. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Greco, S., Inuiguchi, M., Słowiński, R.: Fuzzy Rough Sets and Multiple Premise Gradual Decision Rules. In: Di Gesú, V., Masulli, F., Petrosino, A. (eds.) WILF 2003. LNCS (LNAI), vol. 2955, pp. 148–163. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Greco, S., Matarazzo, B., Słowiński, R.: The Use of Rough Sets and Fuzzy Sets in MCDM. In: Gal, T., Stewart, T., Hanne, T. (eds.) Advances in Multiple Criteria Decision Making, pp. 1451–1459. Kluwer Academic Publishers, Boston (1999)Google Scholar
  7. 7.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough Set Processing of Vague Information Using Fuzzy Similarity Relations. In: Calude, C.S., Paun, G. (eds.) Finite Versus Infinite – Contributions to an Eternal Dilemma, pp. 149–173. Springer, London (2000)Google Scholar
  8. 8.
    Inuiguchi, M., Greco, S., Słowiński, R., Tanino, T.: Possibility and Necessity Measure Specification Using Modifiers for Decision Making under Fuzziness. Fuzzy Sets and Systems 137, 151–175 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Inuiguchi, M., Tanino, T.: New Fuzzy Rough Sets Based on Certainty Qualification. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 278–296. Springer, Berlin (2003)Google Scholar
  10. 10.
    Nakamura, A., Gao, J.M.: A Logic for Fuzzy Data Analysis. Fuzzy Sets and Systems 39, 127–132 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pawlak, Z.: Rough Sets. Kluwer, Dordrecht (1991)zbMATHGoogle Scholar
  12. 12.
    Pawlak, Z.: Reasoning about Data - A Rough Set Perspective. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 25–34. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Polkowski, L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg (2002)zbMATHGoogle Scholar
  14. 14.
    Polkowski, L., Skowron, A.: Rough Mereology: A New Paradigm for Approximate Reasoning. Int. Journal of Approximate Reasoning 15(4), 333–365 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Skowron, A., Stepaniuk, J.: Information Granules and Rough-Neural Computing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 43–84. Springer, Berlin (2003)Google Scholar
  16. 16.
    Słowiński, R.: Rough Set Processing of Fuzzy Information. In: Lin, T.Y., Wildberger, A. (eds.) Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, Simulation Councils, Inc., San Diego, CA, pp. 142–145 (1995)Google Scholar
  17. 17.
    Słowiński, R., Stefanowski, J.: Rough Set Reasoning about Uncertain Data. Fundamenta Informaticae 27, 229–243 (1996)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Yao, Y.Y.: Combination of Rough and Fuzzy Sets Based on α-level Sets. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining: Analysis for Imprecise Data, pp. 301–321. Kluwer, Boston (1997)Google Scholar
  19. 19.
    Zadeh, L.A.: Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans. Systems Man Cybernet. 3, 28–44 (1973)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Masahiro Inuiguchi
    • 1
  • Salvatore Greco
    • 2
  • Roman Słowiński
    • 3
    • 4
  1. 1.Graduate School of Engineering ScienceOsaka UniversityOsakaJapan
  2. 2.Faculty of EconomicsUniversity of CataniaCataniaItaly
  3. 3.Institute of Computing SciencePoznań University of TechnologyPoznańnPoland
  4. 4.Institute for Systems ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations