Advertisement

A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis

  • Yiyu Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)

Abstract

The theory of rough sets and formal concept analysis are compared in a common framework based on formal contexts. Different concept lattices can be constructed. Formal concept analysis focuses on concepts that are definable by conjuctions of properties, rough set theory focuses on concepts that are definable by disjunctions of properties. They produce different types of rules summarizing knowledge embedded in data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Düntsch, I., Gediga, G.: Approximation operators in qualitative data analysis. In: de Swart, H., Orlowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Application of Relational Structures as Knowledge Instruments, pp. 216–233. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in knowledge discovery and data mining, pp. 1–34. AAAI/MIT Press, Menlo Park, California (1996)Google Scholar
  3. 3.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin (1999)zbMATHGoogle Scholar
  4. 4.
    Gediga, G., Düntsch, I.: Modal-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 155–162 (2002)Google Scholar
  5. 5.
    Gediga, G., Düntsch, I.: Skill set analysis in knowledge structures. British Journal of Mathematical and Statistical Psychology (to appear)Google Scholar
  6. 6.
    Hu, K., Sui, Y., Lu, Y., Wang, J., Shi, C.: Concept approximation in concept lattice, Knowledge Discovery and Data Mining. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 167–173. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Kent, R.E.: Rough concept analysis: a synthesis of rough sets and formal concept analysis. Fundamenta Informaticae 27, 169–181 (1996)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Pagliani, P.: From concept lattices to approximation spaces: algebraic structures of some spaces of partial objects. Fundamenta Informaticae 18, 1–25 (1993)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  11. 11.
    Saquer, J., Deogun, J.S.: Formal rough concept analysis. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 91–99. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)Google Scholar
  13. 13.
    Wolff, K.E.: A conceptual view of knowledge bases in rough set theory. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 220–228. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Wong, S.K.M., Wang, L.S., Yao, Y.Y.: Interval structure: a framework for representing uncertain information. In: Uncertainty in Artificial Intelligence: Proceedings of the 8th Conference, pp. 336–343. Morgan Kaufmann Publishers, San Francisco (1992)Google Scholar
  15. 15.
    Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximation Reasoning 15, 291–317 (1996)zbMATHCrossRefGoogle Scholar
  16. 16.
    Yao, Y.Y.: Concept lattices in rough set theory. In: Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society (2004) (to appear)Google Scholar
  17. 17.
    Yao, Y.Y., Chen, Y.H.: Rough set approximations in formal concept analysis. In: Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society (2004) (to appear)Google Scholar
  18. 18.
    Yao, Y.Y., Wong, S.K.M., Lin, T.Y.: A review of rough set models. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining: Analysis for Imprecise Data, pp. 47–75. Kluwer Academic Publishers, Boston (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yiyu Yao
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations