Advertisement

The Rough Bayesian Model for Distributed Decision Systems

  • Dominik Ślȩzak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)

Abstract

The article presents a new approach to understanding the concepts of the theory of rough sets basing on the inversive probabilities derivable from distributed decision systems. The Rough Bayesian model – a novel probabilistic extension of rough sets related to Bayes’ factor and Bayesian methods of the statistical hypothesis testing is proposed. Advantages of the Rough Bayesian model are illustrated by the examples.

Keywords

Rough Sets Decision Systems Inverse Probabilities Bayesian Reasoning Bayes’ Factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Łukasiewicz, J.: Die logischen Grundlagen derWahrscheinchkeitsrechnung. Kraków (1913). In: Borkowski, L. (ed.) Jan Łukasiewicz – Selected Works, North Holland Publishing Company, PWN (1970)Google Scholar
  2. 2.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1998)Google Scholar
  3. 3.
    Pawlak, Z.: Rough sets – Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  4. 4.
    Pawlak, Z.: New Look on Bayes’ Theorem – The Rough Set Outlook. In: Proc. of JSAI RSTGC 2001, pp. 1–8 (2001)Google Scholar
  5. 5.
    Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.): Rough Set Methods and Applications. Physica Verlag, Heidelberg (2000)Google Scholar
  6. 6.
    Ślȩzak, D., Ziarko, W.: Attribute Reduction in the Bayesian Version of Variable Precision Rough Set Model. In: Proc. of RSKD 2003. ENTCS, vol. 82/4, Elsevier, Amsterdam (2003)Google Scholar
  7. 7.
    Swinburne, R.: Bayes’s Theorem. Proc. of the British Academy 113 (2003)Google Scholar
  8. 8.
    Ziarko, W.: Variable precision rough sets model. Journal of Computer and Systems Sciences 46/1, 39–59 (1993)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dominik Ślȩzak
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada
  2. 2.Polish-Japanese Institute of Information TechnologyWarsawPoland

Personalised recommendations