Advertisement

Rough Set Methods in Approximation of Hierarchical Concepts

  • Jan G. Bazan
  • Sinh Hoa Nguyen
  • Hung Son Nguyen
  • Andrzej Skowron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)

Abstract

Many learning methods ignore domain knowledge in synthesis of concept approximation. We propose to use hierarchical schemes for learning approximations of complex concepts from experimental data using inference diagrams based on domain knowledge. Our solution is based on the rough set and rough mereological approaches. The effectiveness of the proposed approach is performed and evaluated on artificial data sets generated by a traffic road simulator.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barwise, J., Seligman, J. (eds.): Information Flow: The Logic of Distributed Systems. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  2. 2.
    Bazan, J.G.: A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications, pp. 321–365. Physica-Verlag, Heidelberg (1998)Google Scholar
  3. 3.
    Bazan, J., Nguyen, H.S., Skowron, A., Szczuka, M.: A view on rough set concept approximation. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 181–188. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Bazan, J.G., Szczuka, M.: RSES and RSESlib - a collection of tools for rough set computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Kloesgen, W., Żytkow, J. (eds.): Handbook of Knowledge Discovery and Data Mining. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  6. 6.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapore (1999)Google Scholar
  7. 7.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1998)Google Scholar
  8. 8.
    Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  10. 10.
    Pawlak, Z., Skowron, A.: A rough set approach for decision rules generation. In: Thirteenth International Joint Conference on Artificial Intelligence IJCAI, Chambéry, France, pp. 114–119. Morgan Kaufmann, San Francisco (1993)Google Scholar
  11. 11.
    Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS 50, 537–544 (2003)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15, 333–365 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Skowron, A.: Approximate reasoning by agents in distributed environments. In: Zhong, N., Liu, J., Ohsuga, S., Bradshaw, J. (eds.) Intelligent Agent Technology Research and Development: Proceedings of IAT 2001, Maebashi, Japan, October 23-26, pp. 28–39. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  14. 14.
    Skowron, A.: Approximation spaces in rough neurocomputing. In: Inuiguchi, M., Tsumoto, S., Hirano, S. (eds.) Rough Set Theory and Granular Computing, pp. 13–22. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Skowron, A., Stepaniuk, J.: Information granule decomposition. Fundamenta Informaticae 47(3-4), 337–350 (2001)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Skowron, A., Szczuka, M.: Approximate reasoning schemes: Classifiers for computing with words. In: Proceedings of SMPS 2002. Advances in Soft Computing, Heidelberg, Canada, pp. 338–345. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge (2000)Google Scholar
  18. 18.
    Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22, 73–84 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jan G. Bazan
    • 1
  • Sinh Hoa Nguyen
    • 2
  • Hung Son Nguyen
    • 3
  • Andrzej Skowron
    • 3
  1. 1.Institute of MathematicsUniversity of RzeszówRzeszówPoland
  2. 2.Japanese-Polish Institute of Information TechnologyWarsawPoland
  3. 3.Institute of MathematicsWarsaw UniversityWarsawPoland

Personalised recommendations