Advertisement

Investigation about Time Monotonicity of Similarity and Preclusive Rough Approximations in Incomplete Information Systems

  • Gianpiero Cattaneo
  • Davide Ciucci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)

Abstract

Starting from an incomplete information system, we add some information in two different ways: by an increase in the number of known values and by an increase in the number of attributes. The behavior of the similarity and preclusive rough approximations are studied in both cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Słowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. Transactions on Knowledge and Data Engineering 12, 331–336 (2000)CrossRefGoogle Scholar
  3. 3.
    Cattaneo, G.: Generalized rough sets (preclusivity fuzzy-intuitionistic BZ lattices). Studia Logica 58, 47–77 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cattaneo, G.: Abstract approximation spaces for rough theories. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1, pp. 59–98. Physica-Verlag, Heidelberg (1998)Google Scholar
  5. 5.
    Orlowska, E.: Introduction: What you always wanted to know about rough sets. In: Orlowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 1–20. Physica-Verlag, Heidelberg (1998)Google Scholar
  6. 6.
    Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112, 39–49 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Stefanowki, J., Tsoukiàs, A.: On the extension of rough sets under incomplete information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–81. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Vakarelov, D.: A modal logic for similarity relations in Pawlak knowledge representation systems. Fundamenta Informaticae XV, 61–79 (1991)MathSciNetGoogle Scholar
  9. 9.
    Stepaniuk, J.: Approximation spaces in extensions of rough sets theory. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 290–297. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Stefanowski, J., Tsoukiàs, A.: Valued tolerance and decision rules. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 212–219. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Düntsch, I., Orlowska, E.: Beyond modalities: Sufficiency and mixed algebras. In: Orlowska, E., Szalas, A. (eds.) Relational Methods for Computer Science Applications, pp. 277–299. Physica-Verlag, Heidelberg (2001)Google Scholar
  12. 12.
    Cattaneo, G., Ciucci, D.: Algebraic structures for rough sets. In: Dubois, D., Polkowski, L., Gryzmala-Busse, J. (eds.) Fuzzy Rough Sets, Springer, Heidelberg (2003) (in press)Google Scholar
  13. 13.
    Słowinski, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft-Computing, vol. IV, pp. 17–33. Duke University Press, Durham (1997)Google Scholar
  14. 14.
    Orlowska, E.: Kripke semantics for knowledge representation logics. Studia Logica 49, 255–272 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pagliani, P.: Pre-topologies and dynamic spaces. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS, vol. 2639, pp. 146–155. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Greco, S., Matarazzo, B., Slowinski, R.: Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems. In: Zanakis, S., Doukidis, G., Zopounidis, C. (eds.) Decision Making: Recent Developments and Worldwide Applications, pp. 295–316. Kluwer Academic Publishers, Boston (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gianpiero Cattaneo
    • 1
  • Davide Ciucci
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità di Milano BicoccaMilanoItaly

Personalised recommendations