Bayesian Confirmation Measures within Rough Set Approach

  • Salvatore Greco
  • Zdzisław Pawlak
  • Roman Słowiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)


Bayesian confirmation theory considers a variety of non-equivalent confirmation measures quantifying the degree to which a piece of evidence supports a hypothesis. In this paper, we apply some of the most relevant confirmation measures within the rough set approach. Moreover, we discuss interesting properties of these confirmation measures and we propose a new property of monotonicity that is particularly relevant within rough set approach. The main result of this paper states which one of the confirmation measures considered in the literature have the desirable properties from the viewpoint of the rough set approach.


Decision Rule Monotonicity Property Decision Algorithm Causal Decision Theory Decision Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carnap, R.: Logical Foundations of Probability, 2nd edn. University of Chicago Press, Chicago (1962)Google Scholar
  2. Christensen, D.: Measuring Confirmation. Journal of Philosophy XCVI, 437–461 (1999)CrossRefGoogle Scholar
  3. Earman, J.: Bayes or Bust: A Critical Examination of Bayesian Confirmation Theory. MIT Press, Cambridge (1992)Google Scholar
  4. Eells, E.: Rational Decision and Causality. Cambridge University Press, Cambridge (1982)Google Scholar
  5. Eells, E., Fitelson, B.: Measuring confirmation and evidence. Journal of Philosophy 97, 663–672 (2000)CrossRefMathSciNetGoogle Scholar
  6. Fitelson, B.: Studies in Bayesian Confirmation Theory. Ph.D. thesis, University of Wisconsin – Madison (2001)Google Scholar
  7. Flach, P.A., Lachiche, N.: Confirmation-guided discovery of first-order rules with tertius. Machine Learning 42, 61–95 (2001)zbMATHCrossRefGoogle Scholar
  8. Gillies, D.: In defense of the Popper-Miller argument. Philosophy of Science 53, 110–113 (1986)CrossRefMathSciNetGoogle Scholar
  9. Good, I.: The best explicatum for weight of evidence. Journal of Statistical Computation and Simulation 19, 294–299 (1984)CrossRefGoogle Scholar
  10. Greco, S., Pawlak, Z., Słowiński, R.: Generalized decision algorithms, rough inference rules, and flow graphs. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 93–104. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. Greco, S., Pawlak, Z., Słowiński, R.: Can Bayesian confirmation measures be useful for rough set decision rules? (2004) (submitted)Google Scholar
  12. Hajek, P., Havranek, T.: Mechanising Hypothesis Formulation: Mathematical Foundation for a General Theory. Springer, Berlin (1978)Google Scholar
  13. Heckerman, D.: An axiomatic framework for belief updates. In: Kanal, L., Lemmer, J. (eds.) Uncertainty in Artificial Intelligence, vol. (2), pp. 11–22. Elsevier, New York (1988)Google Scholar
  14. Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measures of Interest. Kluwer, Boston (2002)Google Scholar
  15. Horwich, P.: Probability and Evidence. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  16. Horvitz, E., Heckerman, D.: The inconsistent use of certainty measures in artificial intelligence research. In: Kanal, L., Lemmer, J. (eds.) Uncertainty in Artificial Intelligence, vol. (1), pp. 137–151. Elsevier, New York (1986)Google Scholar
  17. Jeffrey, R.: Probability and the Art of Judgment. Cambridge University Press, Cambridge (1992)Google Scholar
  18. Joyce, J.: The Foundations of Causal Decision Theory. Cambridge University Press, Cambridge (1999)zbMATHCrossRefGoogle Scholar
  19. Kyburg, H.: Recent work in inductive logic. In: Lucey, Tabor (eds.) Recent Work in Philosophy, pp. 89–150. Rowman and Allanfield, Totowa, N.J (1983)Google Scholar
  20. Keynes, J.: A Treatise on Probability. Macmillan, London (1921)zbMATHGoogle Scholar
  21. Łukasiewicz, J.: Die Logische Grundlagen der Wahrscheinlichkeitsrechnung, Cracow; English translation. In: Borkowski, L. (ed.) Jan Łukasiewicz – Selected Works, North Holland & Polish Scientific Publishers, Amsterdam, Warsaw (1970)Google Scholar
  22. Mackie, J.L.: The paradox of confirmation. The British Journal for the Philosophy of Science 13, 265–277 (1963)CrossRefGoogle Scholar
  23. Mackie, J.: The relevance criterion of confirmation. The British Journal for the Philosophy of Science 20, 27–40 (1969)zbMATHCrossRefGoogle Scholar
  24. Milne, P.: A Bayesian defence of Popperian science? Analysis 55, 213–215 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  25. Milne, P.: Log [P(h|e)/P(h|b)] is the one true measure of confirmation. Philosophy of Science 63, 21–26 (1996)CrossRefMathSciNetGoogle Scholar
  26. Pawlak, Z.: Rough Sets. Int. J. of Computer and Information Sciences 11, 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  27. Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)zbMATHGoogle Scholar
  28. Pawlak, Z.: Rough Sets, decision algorithms and Bayes’ Theorem. European Journal of Operational Research 136, 181–189 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  29. Pawlak, Z.: Flow graphs and decision algorithms. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 1–11. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. Pawlak, Z.: Decision networks. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 1–7. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman, San Francisco (1988)Google Scholar
  32. Pollard, S.: Milne’s measure of confirmation. Analysis 59, 335–337 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  33. Schlesinger, G.: Measuring degrees of confirmation. Analysis 55, 208–212 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  34. Rosenkrantz, R.: Bayesian confirmation: paradise regained. The British Journal for the Philosophy of Science 45, 467–476 (1994)CrossRefMathSciNetGoogle Scholar
  35. Schum, D.: The Evidential Foundations of Probabilistic Reasoning. Wiley, New York (1994)Google Scholar
  36. Tsumoto, S.: Statistical test for rough set approximation based on Fisher’s exact test. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 381–388. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  37. Yao, Y.Y., Zhong, N.: An analysis of quantitative measures associated with rules. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 479–488. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  38. Zembowicz, R., Zytkow, J.: From contingency tables to various forms of knowledge in databases. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 329–349. AAAI Press & The MIT Press, Menlo Park, Cambridge (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Salvatore Greco
    • 1
  • Zdzisław Pawlak
    • 2
    • 3
  • Roman Słowiński
    • 4
    • 5
  1. 1.Faculty of EconomicsUniversity of CataniaCataniaItaly
  2. 2.Institute of Theoretical and Applied InformaticsPolish Academy of SciencesGliwicePoland
  3. 3.Warsaw School of Information TechnologyWarsawPoland
  4. 4.Institute of Computing SciencePoznań University of TechnologyPoznańPoland
  5. 5.Institute for Systems ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations