Advertisement

A Note on the Regularization Algorithm

  • Wojciech Jaworski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)

Abstract

Regularization Algorithm (also called Regularization Network) is a technique for solving problems of learning from examples – in particular, the problem of approximating a multivariate function from sparse data. We analyze behavior of Regularization Algorithm for regularizator parameter equal to zero. We propose an approximative version of algorithm in order to overcome the computational cost for large data sets. We give proof of convergence and estimation for error of approximation.

Keywords

computational learning theory regularization algorithm approximate regularization algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cucker, F., Smale, S.: On the mathematical foundations of learning. Bulletin of AMS 39, 1–49 (2001)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Cucker, F., Smale, S.: Best choices for regularization parameters in learning theory. Foundations of computational Mathematics 2(4), 413–428 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dodd, T., Harrison, R.: Iterative Solution to Approximation in Reproducing Kernel Hilbert Spaces. In: 15th IFAC World Congress: b 2002, CDROM (2002)Google Scholar
  4. 4.
    Evgeniou, T., Pontil, M., Poggio, T.: Regularization Networks and Support Vector Machines. Advances in Computational Mathematics 13, 1–50 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Friedman, J.H., Hastie, T., Tibshirani, R.: Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  6. 6.
    Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words, Cognitive Technologies. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  8. 8.
    Poggio, T., Smale, S.: The Mathematics of Learning: dealing with Data. Notices of the AMS 50(5), 537–544 (2003)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Wojciech Jaworski
    • 1
  1. 1.Faculty of Mathematics, Computer Science and MechanicsWarsaw UniversityWarsawPoland

Personalised recommendations